
Algebraic Datatypes in Haskell

CS 430 :: Bowers :: Spring '19



An algebraic data type is a type formed by combining other types.

Sort of like a struct  in C, only better because it enables pattern
matching.

Defines what values the type can take:

data Bool = False | True 
data Int = -2147483648 | -2147483647 | ... | -1 |  
           0 | 1 | 2 | ... | 2147483647 
 
data Boolish = False | True | OutcomeInDoubt 
data Year = Year Int 
data Maybe a = Just a | Empty 
 
tenYearsFromNow :: Year -> Year 
tenYearsFromNow (Year x) = (Year (x + 10)) 
twentyYearsFrom y = tenYearsFromNow $ tenYearsFromNow y 
 
tyfnAsInt :: Year -> Int 
tyfnAsInt (Year x) = (x + 10) 

(Think of | as or.)



Think of a type as a set of values (forget the
operations for now).

i.e. Z is the integers.

We can take products of sets:

Z× R is all ordered pairs (x, y) where x ∈ Z and y ∈ R.

We can take unions of sets:

{1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4}.
Sometimes written {1, 2, 3} + {2, 3, 4} = {1, 2, 3, 4}

So we have operations × and + on sets (looks like algebra), and this in
turn is easily extended to types.



Products of Types

data Point = Point Float Float 

If Float is the set of all floats, then Point Float Float  is like saying 

Point = Float× Float.

We can now create a point like Point 3.4 4.7 .

The word Point  is called a value constructor and the Point Float
Float  above says that a Point  holds two Float  values.

To create a point, you just specify the value constructor and two floats:

Point 3.0 4.8 



Similarly, we can sum types.

data Point -- A point is either 2D or 3D 
 = Point2D Float Float  
 | Point3D Float Float Float 



data Point = Point2D Float Float  
 | Point3D Float Float Float 
  
data Segment = Segment (Point, Point) 

Algebraic datatypes are especially powerful when mixed with pattern
matching:

 
xCoord :: Point -> Float  
xCoord (Point2D x _)   = x 
xCoord (Point3D x _ _) = x 
 
yCoord :: Point -> Float  
yCoord (Point2D _ y)   = y 
yCoord (Point3D _ y _) = y 
 
zCoord :: Point -> Float  
zCoord (Point3D _ _ z) = z 
 
start (Segment (p1, _)) = p1
end (Segment (_, p2)) = p2 
 
xCoord $ start (Segment ((Point2D 3 4), (Point2D 5 6)))  



Consider the following C style struct for a tree and suppose we only
want to store data at the leaf nodes:

 
typedef struct node { 
    struct node *left; 
    struct node *right; 
    int value; // Storing values at internal nodes also 
} node; 
 
 
bool isLeaf(struct node *n) { 
  // Wouldn't it be nice if leaf nodes looked different 
  // than internal nodes? 
  return (*n).left == NULL && (*n).right == NULL; 
} 



Haskell version:

data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 

Read this as: "a Tree  is either the Empty  tree, or is a Leaf  node
storing a value, or is a Node  with two children, both of which are Tree
typed."

Notice that the definition of Tree  uses Tree  within the definition.
This is a recursive type.



Haskell version:

data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 

How would you code for the following tree?

     . 
    / \ 
   .   3 
  / \ 
 4   5 



Haskell version:

data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 

How would you code for the following tree?

     . 
    / \ 
   .   3 
  / \ 
 4   5 

Node (Node (Leaf 4) (Leaf 5)) (Leaf 3) 



data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 

Allows for some great pattern matching:

allValues :: Tree -> [Int] 
allValues t = case t of  
  Empty -> [] 
  (Leaf x) -> [x] 
  (Node l r) -> (allValues l) ++ (allValues r) 

> allValues (Node (Node (Leaf 4) (Leaf 5)) (Leaf 3)) 



data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 

Something interesting:

*Main> :t Node 
Node :: Tree -> Tree -> Tree 
*Main> :t Leaf 
Leaf :: Int -> Tree 

So even value constructors are really functions!



In GHCI we'd like to print out the value of a tree, like:

> (Node (Leaf 2) (Leaf 3)) 

but this will give us an error. Haskell only prints things that are part of the
type class Show . Fortunately, we can get this almost automagically:

data Tree 
  = Empty 
  | Leaf Int  
  | Node Tree Tree 
  deriving (Show) 

This is sort of like implements Show  in Java. Just like algebraic types
are sort of like structs , type classes are sort of like interfaces. Now
our Tree  is "showable".

Other typeclasses you might want: Eq  (can test equality), Ord  (can
order / compare), Show  (can convert to a string), Read  (can read from
a string).



data List a 
  = Empty  
  | Prepend a (List a)  
  deriving (Show, Read, Eq, Ord)  
 
3 `Prepend` (4 `Prepend` (5 `Prepend` Empty)) 
 
-- same as 
 
Prepend 3 (Prepend 4 (Prepend 5 Empty)) 
 
-- compare to 
3 : (4 : (5 : [])) -- i.e. [3, 4, 5] 
 
-- same as 
(:) 3 ((:) 4 ((:) 5 [])) 
 
listHead (Prepend x _) = x 
listTail (_ `Prepend` t) = t
 
listLength Empty = 0 
listLength (x `Prepend` xs) = 1 + (listLength xs) 



data List a  
  = Empty  
  | Cons a (List a)  
  deriving (Show, Read, Eq, Ord)  
 
3 `Cons` (4 `Cons` (5 `Cons` Empty)) 
 
-- compare to 
3 : (4 : (5 : [])) -- i.e. [3, 4, 5] 
 
listHead (x `Cons` _) = x 
-- head (x:_) = x 
listTail (_ `Cons` t) = t 
-- tail (_:t) = t 
 
listLength Empty = 0 
-- length [] = 0 
listLength (x `Cons` xs) = 1 + (listLength xs) 
--length (x:xs) = 1 + (length xs) 
 


