

CS 430
Spring 2019

Mike Lam, Professor

Syntax

Consider the following code

if (a < 5) {
 printf(“%d\n”, a);
}

if a < 5:
 print a

if [$a -lt 5]; then
 echo $a
fi

puts a if a < 5

Language A

Language B

Language C

Language D

Syntax

● Textbook: syntax is "the form of [a language's]
expressions, statements, and program units."

● In other words: the appearance of code
● Semantics deal with the meaning of code

– Syntax and semantics are (ideally) closely related
● Goals of syntax analysis:

– Checking for program validity or correctness
– Facilitate translation or execution of a program

Languages

● What is a language?
– More relevantly: what is a formal language?

Searching

● How would you look for all files in the current folder
that have the .txt extension?

● How would you look for all files in any subdirectory
starting with “cs430”?

These are formal languages!

Languages

● Alphabet:
– Σ = { set of all characters }

● Language:
– L = { set of sequences of characters from Σ }
– How to describe L succinctly? Need a meta-language.

● Example:
– Σ = { a, b, c }
– L = { “a”, “ab”, “abb”, “abbb”, ... }
– i.e., “all strings containing one ‘a’ followed by zero or more ‘b’s”

Regular languages

● Regular expressions
– Describe regular languages

● Can be thought of as generalized search patterns

– Quantification: a*
● * = zero or more
● + = one or more (extension)
● ? = zero or one (extension)

– Concatenation: ab
– Alternation: a|b

● Other common features
– Grouping: (a|b)c vs. a|bc and (aa)* vs. aa*
– Character sets: [a-z] or [0-9] (extension)

higher precedence

lower precedence

Activity

● What languages are described by the following regular
expressions?
– Write down three “words” that are in the language
– Write down three “words” that are NOT in the language

ab* a(a|b)*ba*|b

Lexical Analysis

● Lexemes or tokens: the smallest building blocks of a
language's syntax (described using regular expressions)

● Lexing or scanning: the process of separating a character
stream into tokens

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

char *str = "hi";

char keyword
* star_op
str identifier
= equals_op
"hi" str_literal
; semicolon

Syntax Analysis

● Problem: tokens have no structure
– No inherent relationship between each other
– Need a way to describe hierarchy in a way that is closer to

the semantics of the language

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

=

total /

n

vals

sum()

Syntax Analysis

● Another problem: regular expressions can’t “count”
– Try writing a regular expression that describes strings with matching

parenthesis (e.g., “()” and “(())()” but not “(()” or “(()()))”)

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

More
descriptive

Syntax Analysis

● Context-free language
– Description of a language's syntax
– Encodes hierarchy and structure of language tokens

● Usually represented using a tree

– Described by context-free grammars
● Usually written in Backus-Naur Form

– Provide ways to control ambiguity, associativity, and
precedence in a language

Grammars (N,T,P,S)

● Non-terminals (N) vs. terminals (T)
– Terminals are essentially tokens (described using regular expressions)
– Non-terminals represent units of program structure
– One special non-terminal: the start symbol (S)

● Production rules (P): A → (N U T)*
– Left hand side: single non-terminal
– Right hand side: sequence of terminals and/or non-terminals
– LHS is replaced by the RHS during derivation
– Colloquially: "is composed of"

<assign> ::= <var> = <expr>
<var> ::= a | b | c
<expr> ::= <expr> + <expr>
 | <var>

A → V = E
V → a | b | c
E → E + E
 | V

Derivation

● Derivation: a series of grammar-permitted transformations
leading to a sentence (sequence of terminals)
– Each transformation applies exactly one rule
– Each intermediate string of symbols is a sentential form
– Leftmost vs. rightmost derivations

● Which non-terminal do you expand first?

– Parse tree represents a derivation in tree form
● Built from the start symbol (root) down during derivation
● Final parse tree is called complete parse tree
● The sentence is the sequence of all leaf nodes (terminals)
● Interior nodes represent non-terminals
● Represents a program, executed from the bottom up

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A → V = E
V → a | b | c
E → E + E
 | V

A
V = E
a = E
a = E + E
a = V + E
a = b + E
a = b + V
a = b + c

A

V E

EEa

V V

+

=

b c

Ambiguous Grammars

● An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence
– The semantics may be similar or identical, but there is a difference

syntactically
– It is important to be precise!

● Can usually be eliminated by rewriting the grammar
– Usually by making one or more rules more restrictive

● Example: derive “a = x + y + z” and show the parse tree

A → V = E
V → a | b | c
E → E + E
 | V

Operator Associativity

● The previous ambiguity resulted from an unclear associativity
● Does x+y+z = (x+y)+z or x+(y+z)?

– Former is left-associative (E → E + V)
– Latter is right-associative (E → V + E)

● Can be enforced explicitly in a grammar
– The problem is the E → E + E production

● Need to remove one possible interpretation

– Left-associative: change to (E → E + V)
– Right-associative: change to (E → V + E)
– Sometimes just noted with annotations

Operator Precedence

● Precedence determines the relative priority of operators in a
single production
– Another source of ambiguity

● Does x+y*z = (x+y)*z or x+(y*z)?
– Former: "+" has higher precedence
– Latter: "*" has higher precedence

● Can be enforced explicitly in a grammar
– Separate into two non-terminals (e.g., E and T)
– Non-terminals closer to the start symbol have lower precedence

● E.g., for “normal” precedence: E → E + T | T T → T * V | V

– Sometimes just noted with annotations

Extended BNF

● New constructs
– Optional: []
– Closure: {}
– Multiple-choice: |

● All of these can be expressed using regular BNF
– (exercise left to the reader)

● So these are really just conveniences

Summary

● Regular languages
– Described by regular expressions
– Often used for text processing
– Core part of languages like Awk and Perl

● Context-free languages
– Described by context-free grammars (using BNF)
– Often used to describe a programming language's syntax

● Lots of very nice language theory
– We won't dig too deeply in this course
– Take CS 432 if you're interested in digging deeper

Examples

● ANTLR grammars:
– C
– C++14
– Java 8
– Ruby
– Prolog

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4/blob/master/c/C.g4
https://github.com/antlr/grammars-v4/blob/master/cpp/CPP14.g4
https://github.com/antlr/grammars-v4/blob/master/java8/Java8.g4
https://github.com/antlr/grammars-v4/blob/master/ruby/Corundum.g4
https://github.com/antlr/grammars-v4/blob/master/prolog/prolog.g4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

