Syntax

I Consider the following code

Language A

Language B

Language C

Language D

if (a < 5) {
printf(“%d\n”, a);
h

if a < 5:
print a

if [$a -1t 5]; then
echo %a
fi

puts a 1f a < 5

I Syntax

* Textbook: syntax Is "the form of [a language's]
expressions, statements, and program units."

* |n other words: the appearance of code
* Semantics deal with the meaning of code

- Syntax and semantics are (ideally) closely related
* Goals of syntax analysis:

— Checking for program validity or correctness
- Facilitate translation or execution of a program

 What is a language?
- More relevantly: what is a formal language?

I Searching

* How would you look for all files in the current folder
that have the .txt extension?

* How would you look for all files in any subdirectory
starting with “cs430"?

These are formal languages!

I Languages

* Alphabet:
- 2 ={ set of all characters }
* Language:
- L = { set of sequences of characters from 2 }
- How to describe L succinctly? Need a meta-language.

* Example:
-2={a,b,c}
- L={"a", “ab”, “abb”, “abbb”, ... }
- l.e., “all strings containing one ‘a’ followed by zero or more ‘b’s”

I Regular languages

* Regular expressions

— Describe regular languages
* Can be thought of as generalized search patterns

- Quantification: a*
e *=zero or more

* + = 0ne or more (extension)
e ? = zero or one (extension)

— Concatenation: ab

higher precedence

- Alternation: alb lower precedence
e Other common features

- Grouping: (alb)c vs. al]bc and (aa)* vs. aa*

— Character sets: [a-z] or [0-9] (extension)

Jl Activity

* What languages are described by the following regular
expressions?

- Write down three “words” that are in the language
- Write down three “words” that are NOT in the language

ab* a*|b a(alb)*b

I Lexical Analysis

* Lexemes or tokens: the smallest building blocks of a
anguage's syntax (described using regular expressions)

* Lexing or scanning: the process of separating a character
stream into tokens

total = sum(vals) / n char *str = "hi";
total identifier char keyword

= equals_op * star_op

sum identifier str identifier
(left_paren = equals_op
vals identifier "hi" str_literal
) right_paren ; semicolon

/ divide_op

n identifier

I Syntax Analysis

e Problem: tokens have no structure

- No inherent relationship between each other

- Need a way to describe hierarchy in a way that is closer to
the semantics of the language

total = sum(vals) / n =

total identifier é(/////

_ equals_op total /

sum identifier

(left_paren

vals identifier sum() n
) right_paren ¢

/ divide_op

n identifier vals

I Syntax Analysis

* Another problem: regular expressions can’t “count”

— Try writing a regular expression that describes strings with matching
parenthesis (e.g., “()"and “(()) ()" butnot “(()" or “(()()))")

Chomsky Hierarchy of Languages

Recursively enumerable

Context-sensitive
More
Context-free descriptive

Regular

I Syntax Analysis

* Context-free language

— Description of a language's syntax

- Encodes hierarchy and structure of language tokens
* Usually represented using a tree

— Described by context-free grammars
* Usually written in Backus-Naur Form

- Provide ways to control ambiguity, associativity, and
precedence In a language

I Grammars (N, T,P,S)

* Non-terminals (N) vs. terminals (T)

- Terminals are essentially tokens (described using regular expressions)
- Non-terminals represent units of program structure
— One special non-terminal: the start symbol (S)

* Production rules (P): A - (Nu T)*

- Left hand side: single non-terminal

- Right hand side: sequence of terminals and/or non-terminals
- LHS is replaced by the RHS during derivation

— Colloquially: "is composed of"

<assign> ::= <var> = <expr> A- V=E
<var> = a | b | c Vo al|b]|oc
<expr> = <expr> + <expr> E- E+E

| <var> | V

I Derivation

* Derivation: a series of grammar-permitted transformations
leading to a sentence (sequence of terminals)

- Each transformation applies exactly one rule
- Each intermediate string of symbols is a sentential form

- Leftmost vs. rightmost derivations
* Which non-terminal do you expand first?
- Parse tree represents a derivation in tree form

 Built from the start symbol (root) down during derivation
Final parse tree is called complete parse tree

The sentence is the sequence of all leaf nodes (terminals)
Interior nodes represent non-terminals

Represents a program, executed from the bottom up

I Example

* Show the leftmost derivation and parse tree of the
sentence "a = b + c¢" using this grammar:

A - V =E A
E—) E+E V = E
v N
a E + E
A
V = E
a =E Y, Y,
a=FE+ E
a=V+ E
a=>b+E b
a=>b+V °
a=>b+c

I Ambiguous Grammars

* An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence

- The semantics may be similar or identical, but there is a difference
syntactically

- It is important to be precise!
* Can usually be eliminated by rewriting the grammar

— Usually by making one or more rules more restrictive
 Example: derive “a = x + y + z” and show the parse tree

| C

m o m

m< >
— 1 1 |
+ — |l

< Mmoo <

I Operator Associativity

* The previous ambiguity resulted from an unclear associativity
* Does x+y+z = (x+y)+z or x+(y+z)?

- Former is left-associative (E - E + V)

- Latter is right-associative (E - V + E)
* Can be enforced explicitly in a grammar

— The problem is the E - E + E production

* Need to remove one possible interpretation
- Left-associative: change to (E - E + V)

- Right-associative: changeto (E - V + E)
- Sometimes just noted with annotations

I Operator Precedence

* Precedence determines the relative priority of operators in a
single production

— Another source of ambiguity
* Does x+y*z = (x+y)*z or x+(y*z)?
- Former: "+" has higher precedence
- Latter: "*" has higher precedence
* Can be enforced explicitly in a grammar

— Separate into two non-terminals (e.g., E and T)

- Non-terminals closer to the start symbol have lower precedence
 E.g., for “normal” precedence: E - E+T|T T-T*V|V

- Sometimes just noted with annotations

I Extended BNF

* New constructs
— Optional: []
— Closure: {}
— Multiple-choice: |
* All of these can be expressed using regular BNF
— (exercise left to the reader)
* So these are really just conveniences

I Summary

* Reqgular languages

- Described by regular expressions
- Often used for text processing
- Core part of languages like Awk and Perl

* Context-free languages

- Described by context-free grammars (using BNF)
- Often used to describe a programming language's syntax
* Lots of very nice language theory

- We won't dig too deeply in this course
- Take CS 432 if you're interested in digging deeper

* ANTLR grammars:
- C
- C++14
- Java 8
- Ruby
- Prolog

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4/blob/master/c/C.g4
https://github.com/antlr/grammars-v4/blob/master/cpp/CPP14.g4
https://github.com/antlr/grammars-v4/blob/master/java8/Java8.g4
https://github.com/antlr/grammars-v4/blob/master/ruby/Corundum.g4
https://github.com/antlr/grammars-v4/blob/master/prolog/prolog.g4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

