Parsing

I Syntax Analysis

* We can now formally describe a language's syntax
— Using regular expressions and context-free grammars
* How does that help us?

It allows us to program a computer to recognize and

translate programming languages automatically!

I Parsing

* General goal of syntax analysis: turn a program into a form
usable for automated translation or interpretation

- Report syntax errors (and optionally recover)

— Produce a parse tree [/ syntax tree

while b !'= 0:
if a > b:

a=a-2>
else:
b =Db - a
return a

statement
sequence

condition

/N

variable

name: b

constant
value: 0

COHM

body

branch

TS

if-body else-body

return

variable
name: a

compare
assign assign
op: >
variable| variable| |variable] bin op variable bin op
nnnnn name: b| |name: a op: — name: b op: —

Image taken from Wikipedia

ANV

variable
name: a

variable

varlable

nnnnn

variable
name: a

I Syntax Analysis

1) Lexical analysis

- Scanning: text — tokens
- Regular languages (described by regular expressions)

2) Syntax analysis

- Parsing: tokens - syntax tree
- Context-free languages (described by context-free grammars)

Often implemented separately

- For simplicity (lexing is simpler), efficiency (lexing is expensive), and
portability (lexing can be platform-dependent)

Together, they represent the first phase of compilation

- Referred to as the front end of a compiler

"Back end"

A
- N\
Source code Tokens Syntax tree Machine code
0oooo
= B o - [
ooooo
ooo
Lexing Parsing Code Generation
N) & Optimization
~

"Front end"

I Lexical Analysis

Chomsky Hierarchy of Languages

Recursively enumerable

Context-sensitive

Context-free

Regular

Most useful *,

for PL

Deciding machine

Turing machine

Linear bounded automaton

hmm o —————

. ~
- ~
" ~

““Pushdown automaton

Flnlte state machine ..

.
''''''
- -
N -
-~ -
..............

I Lexical Analysis

* Reqgular languages are recognized by state machines
(finite automata)

- Set of states with a single start state
- Transitions between states on inputs (+ implicit dead states)
— Some states are final or accepting

a

Regex: a m

* More examples:

alb ab

ab*
a

0 &

* Combine finite automata from multiple regular expressions

- Read as much as possible
- Return token and reset automaton

Figure 4.1 Letter/Digit

addChar; getChar

;"ﬁ:-fl::: Letter D
Start | *
"r::‘c.l,ii'.a‘ addChar; getChar

Digit
> D return Int_Lit
addChar; getChar

A state diagram to
recognize names,
parentheses, and
arithmetic operators

return lookup (lexeme)

addChar; getChar

\ 2 -\, te—lookup (nextChar) =

R J getChar

Figure from
CPL 11" Ed.

I Parsing

* Implemented using a finite automaton + a stack
- Formally: pushdown automata
* Two major types of parsers:

- Recursive-descent parsers
* Implicit stack: system call stack

* Sometimes called top-down parsers
 Left to right token input, Leftmost derivation (LL)

— Shift/reduce parsers

* Explicit stack
 Sometimes called bottom-up parsers (w/ explicit stack)
 Left to right token input, Rightmost derivation (LR)

I Recursive Descent (LL) Parsing

 Collection of parsing routines that call each other
- Uses a stack implicitly (i.e., system call stack)
— Usually one routine per non-terminal in the grammar

— Each routine builds a subtree of the parse tree associated with
the corresponding non-terminal

* Advantage
- Relatively simple to write by hand
* Disadvantage

- Doesn't work with left-recursive grammars and non-pairwise-
disjoint grammars

e This can sometimes be fixed (e.g., with left factoring)

l shiftiReduce (LR) Parsing

e Based on a table of states and actions

- Explicitly stack-based
— Push (or shift) tokens onto a stack

- Pattern-match top of stack to a RHS (called a handle) and
reduce to corresponding LHS (pop RHS and push LHS)

* Advantage
— Much more general than LL parsers
e Disadvantage

- Very difficult to construct by hand
* Usually constructed using automated tools

Recursive Descent Parsing

AL #B&B # Assuming the following methods are implemented:

| # B # bool consume(char c)
Consumes a character of input and verifies that it matches the
given character (returns "false" if it does not).

B-Xx1]y char peek()
Returns a copy of the next character of input to be consumed, but
does not consume it.
parseA(): parseB():

consume('#") if peek() == 'x':

parseB() consume('x"')

if peek() == '&': elif peek() == 'y":

consume('&") consume('y"')

parseB() else:

error "Bad input: "
+ peek()

consume('#"')

I Shift-Reduce Parsing

. e V=FE
- shift 'a’ - shift '+
¢ a e V=FE +
- reduce (V - a) - shift'c'
eV *V=E+CC
- shift '=' - reduce (V - ©)
o« \/ = cV=E+V
- shift 'b’ - reduce (E - E+V)
V=D *V=E
- reduce (V - b) - reduce (V = E)
e V=V e A
- reduce (E - V) — accept

(handles are underlined)

shift = push, reduce = popN

m >

<

I =11

o <M<

E
/I\
E | +
Vv
b
= E
+ V
| b | c

I Compiler Tools

* Creating a parser can be somewhat automated by
lexer/parser generators

- Classic: lex and yacc
- Modern: flex and bison (C) or ANTLR (Java, Python, etc.)

* Input: language description in regular expressions and BNF

* Output: hard-coded lexing and parsing routines

— Can be re-generated if the grammar needs to be changed
- Still have to manually write the translation or execution code

I Conclusion

* Parsers convert code to a syntax tree

— First part of compilation or interpretation

- Largely considered a “solved” problem now
— CPL Ch.4 provides a brief overview

- For a deeper dive, take CS 432!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

