

CS 430
Spring 2019

Mike Lam, Professor

Parsing

Syntax Analysis

● We can now formally describe a language's syntax
– Using regular expressions and context-free grammars

● How does that help us?

It allows us to program a computer to recognize and

translate programming languages automatically!

Parsing

● General goal of syntax analysis: turn a program into a form
usable for automated translation or interpretation
– Report syntax errors (and optionally recover)
– Produce a parse tree / syntax tree

 while b != 0:
 if a > b:
 a = a − b
 else:
 b = b − a
 return a

Image taken from Wikipedia

Syntax Analysis

● 1) Lexical analysis
– Scanning: text → tokens
– Regular languages (described by regular expressions)

● 2) Syntax analysis
– Parsing: tokens → syntax tree
– Context-free languages (described by context-free grammars)

● Often implemented separately
– For simplicity (lexing is simpler), efficiency (lexing is expensive), and

portability (lexing can be platform-dependent)
● Together, they represent the first phase of compilation

– Referred to as the front end of a compiler

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Lexical Analysis

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Finite state machine

Pushdown automaton

Linear bounded automaton

Turing machine

Deciding machine

Most useful
for PL

Lexical Analysis

● Regular languages are recognized by state machines
(finite automata)
– Set of states with a single start state
– Transitions between states on inputs (+ implicit dead states)
– Some states are final or accepting

a

Regex: a

Lexical Analysis

● More examples:

a(bc|c*)
aa*|b

a

b

a a b c

c

c

a

b

a b

a

a|b

a

b

ab
a*

ab*

Lexing

● Combine finite automata from multiple regular expressions
– Read as much as possible
– Return token and reset automaton

Figure from
CPL 11th Ed.

Parsing

● Implemented using a finite automaton + a stack
– Formally: pushdown automata

● Two major types of parsers:
– Recursive-descent parsers

● Implicit stack: system call stack
● Sometimes called top-down parsers
● Left to right token input, Leftmost derivation (LL)

– Shift/reduce parsers
● Explicit stack
● Sometimes called bottom-up parsers (w/ explicit stack)
● Left to right token input, Rightmost derivation (LR)

Recursive Descent (LL) Parsing

● Collection of parsing routines that call each other
– Uses a stack implicitly (i.e., system call stack)
– Usually one routine per non-terminal in the grammar
– Each routine builds a subtree of the parse tree associated with

the corresponding non-terminal
● Advantage

– Relatively simple to write by hand
● Disadvantage

– Doesn't work with left-recursive grammars and non-pairwise-
disjoint grammars

● This can sometimes be fixed (e.g., with left factoring)

Shift/Reduce (LR) Parsing

● Based on a table of states and actions
– Explicitly stack-based
– Push (or shift) tokens onto a stack
– Pattern-match top of stack to a RHS (called a handle) and

reduce to corresponding LHS (pop RHS and push LHS)
● Advantage

– Much more general than LL parsers
● Disadvantage

– Very difficult to construct by hand
● Usually constructed using automated tools

Recursive Descent Parsing

A → # B & B #

 | # B #

B → x | y

parseA():

 consume('#')

 parseB()

 if peek() == '&':

 consume('&')

 parseB()

 consume('#')

parseB():

 if peek() == 'x':

 consume('x')

 elif peek() == 'y':

 consume('y')

 else:

 error "Bad input: "

 + peek()

Assuming the following methods are implemented:

bool consume(char c)
 Consumes a character of input and verifies that it matches the
given character (returns "false" if it does not).

char peek()
 Returns a copy of the next character of input to be consumed, but
does not consume it.

Shift-Reduce Parsing

●

– shift 'a'
● a

– reduce (V → a)
● V

– shift '='
● V =

– shift 'b'
● V = b

– reduce (V → b)
● V = V

– reduce (E → V)

A

V E

Ea

V

V+

=

b

c

A → V = E
E → E + V
 | V
V → a | b | c

● V = E
– shift '+'

● V = E +
– shift 'c'

● V = E + c
– reduce (V → c)

● V = E + V
– reduce (E → E + V)

● V = E
– reduce (V = E)

● A
– accept

(handles are underlined)

shift = push, reduce = popN

Compiler Tools

● Creating a parser can be somewhat automated by
lexer/parser generators
– Classic: lex and yacc
– Modern: flex and bison (C) or ANTLR (Java, Python, etc.)

● Input: language description in regular expressions and BNF
● Output: hard-coded lexing and parsing routines

– Can be re-generated if the grammar needs to be changed
– Still have to manually write the translation or execution code

Conclusion

● Parsers convert code to a syntax tree
– First part of compilation or interpretation
– Largely considered a “solved” problem now
– CPL Ch.4 provides a brief overview
– For a deeper dive, take CS 432!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

