

CS 430
Spring 2019

Mike Lam, Professor

Variables and Scoping

y = 2x + 5

Shift of focus

● Syntax (modules 7-8)
● Semantics (modules 9-16)

– Variables and scoping
– Types and type checking
– Expressions and control structures
– Parameters and subprograms

● Implementation (modules 17-19)
– Activation and environments
– Abstraction and OOP
– Concurrency and Error Handling

● History (module 20)

Variables

● What is a variable?

Variables

● Variable: an abstraction of memory cells
– Most languages have variables
– However, they are NOT essential for computation!

● Six main attributes/properties:
– Name
– Address
– Value
– Type
– Lifetime
– Scope

Binding

● Binding: association between an attribute and an entity
– Bindings begin at binding time

● Language design/implementation time
● Compile time
● Load/link time
● Run time

– Static bindings begin before the program is executed and
do not change during execution

– Dynamic bindings may begin or change during execution

Name

● Name – string of characters that serves as an identifier
– Case sensitivity
– Special characters with meanings (e.g., $ and @ in Ruby)
– Standards or conventions (e.g., camelCase vs. under_scores)

– Semantic significance (e.g., type in FORTRAN and Prolog)
● Keyword vs. reserved word

– Keyword: string of characters with special meaning
– Reserved word: string of characters that cannot be used as a

variable name (may or may not be a keyword)
● Name bindings are usually static

– Often created by a declaration
– Do all variables have a name?

Address

● Address: location of a variable in memory
– Sometimes called l-value

● Address bindings may be static or dynamic
– Creation of this binding is called allocation

● Aliases: multiple variables with identical addresses

Value

● Value: contents of the memory associated with a variable
– Sometimes called r-value

● Value bindings are usually dynamic
– Otherwise, they wouldn't be "variable"
– First binding is called initialization
– Important exception: named constants

Type

● Type: range of values a variable can store
– And the operations that can be applied to it

● Common types:
– Primitive: integer, floating-point, complex, bool, character
– Composite: array/string, pointer, tuple, record, union, object

● Implicit vs. explicit binding
– int x = 5 vs. x = 5

● Static vs. dynamic typing
– i.e., can a variable change type at runtime?

● Type inference
– A language can be both implicitly and statically typed!

Type binding examples

● Java (explicit static)
int x = 5;

x = “hello”; // compiler error

● JavaScript (implicit dynamic)
var x = 5; // x is an int

x = “hello”; // now it’s a String

● Java 10 (implicit static)
var x = 5; // x is inferred to be an int

x = “hello”; // compiler error

Lifetime

● Lifetime: duration of address/storage binding
● Common lifetimes are based on location:

– Static (entire program execution)
– Stack (dynamic, single function execution)
– Heap (dynamic, arbitrary)

● Allocation: explicit or implicit?
– Usually explicit

● Deallocation: explicit or implicit?
– Explicit in C/C++, implicit in garbage-collected languages
– Some languages allow delegation (e.g., Rust)

Scope

● Scope: program range where a variable is visible
– A variable is visible if it can be referenced without qualification
– Many possible ranges (e.g., block, function, global, package)
– OOP brings even more possibilities (public, private, protected)

● Local vs. non-local variables
– A variable is local in the scope where it is declared
– Local variables shadow (hide) non-local variables w/ same name
– Sometimes shadowed variables are still accessible w/ qualification

● Often related to lifetime
– But not necessarily! (e.g., static local in C)

Scope

● Static (lexical) vs. dynamic scoping
– Code structure vs. call structure
– Both involve finding a variable (name resolution) by

searching through a hierarchy of scopes
● Static scoping: compiler can do the search
● Dynamic scoping: search the stack at runtime

– Dynamic scoping is rare now and usually optional
(e.g., Perl)

Referencing Environment

● Referencing environment: all variables visible at some
statement without qualification
– Local scope plus ancestor scopes
– Related concept from compilers: nested symbol tables
– Which variables are visible at the blue and green statements?

class Shadowing3 {
 public static void main(String[] args) {
 if (true != false) {
 x = 6;
 }
 int x = 5;
 System.out.println(x);
} }

Environment at blue: { }
Environment at green: { main.x:int }

Static/dynamic scoping example

● For both static and dynamic scoping:
– What is the output?
– What are the referencing environments at location A, B, and C?

program {
 var x = 5
 y = 2
 // LOCATION A
 func g() {
 var x = 12
 z = 8
 // LOCATION B
 f()
 }
 func f() {
 // LOCATION C
 println(x)
 }
 g()
}

Scoping nuances

● Some languages allow mixing of declarations and code (e.g., C99)
– Scope is usually from declaration to end of program unit

● Some languages require declaration before reference
– Declaration order can influence scoping

● Block-structured languages often restrict scope of declarations in a block
– Sometimes allow duplicate names within a larger enclosing scope

● Many languages do not require explicit declarations (e.g., Ruby)
– Scoping often defaults to function-level (why not block?)

● Scoping is usually enforced by compiler/interpreter, but not always
– In Python, “private” class fields (starting w/ underscores) aren’t private!

Scoping nuances

● “Global” can mean different things
– In Ruby, global variables are truly global (accessible

from entire program)
– In C, “global” variables are actually only accessible

from code in the same module (extern required to
access it from a different file)

– In Python, global variables must be marked in
functions that wish to use them, and must be tagged
with module name outside the module

Global scoping example

● What does this Python program print?
x = 5

def bar():
 print(x)

def baz():
 x = 7
 print(x)

def bam():
 global x
 x = 7

bar()
baz()
print(x)
bam()
print(x)

x = 5

def hipster():
 print(x)
 x = 4
 print(x)

hipster()

Block scoping examples

● Java:

int foo() {
 int x;
 if (someTest()) { x = 5; }
 else { x = 7; }
 return x;
}

int foo() {
 if (someTest()) { int x = 5; }
 else { int x = 7; }
 return x;
}

● Ruby:

def foo()
 if someTest()
 x = 5
 else
 x = 7
 end
 return x
end

Case studies

● Questions
– What is the name, address, value, type, lifetime, and scope?
– Are the bindings static or dynamic?

● Cases
– Java “private” class instance variable

● What would be different in C++?

– Java "public static final" class variable
– C local loop index variable

● i.e., “for (int i = 0; i < N; i++)”

Reminder: common lifetimes include
● Static
● Stack dynamic
● Explicit heap dynamic
● Implicit heap dynamic

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

