

CS 430
Spring 2019

Mike Lam, Professor

Data Types

032 16 8 4
Single Precision

03264 16 8 4
Double Precision

Type Systems

● Type system
– Rules about valid types, type compatibility, and how

data values can be used
● Benefits of a robust type system

– Earlier error detection
– Better documentation
– Increased modularization

Data Types

● Data type: collection of values and associated operations
– Descriptor: collection of a variable's attributes, including its type

● Primitive data types
– Integer, floating-point, complex, decimal, boolean, character

● User-defined data types
– Structured: arrays, tuples, maps, records, unions
– Ordinal: enumerations, subranges
– Pointers and references

Data Types

● Primitive data types
– Integer: signed vs. unsigned, two's complement, arbitrary sizes

● Tradeoff: storage/speed vs. range

– Floating-point: IEEE standard (sign bit, exponent, significand),
precision, rounding error

● Tradeoff: storage/speed vs. accuracy, precision vs. range

– Complex: pairs of floats (real and imaginary)
– Decimal: binary coded decimal
– Boolean: 0 (false) or 1 (true); usually byte-sized
– Character: ASCII, Unicode, UTF-8, and UTF-16 (variable-length),

UTF-32 (fixed-length)

IEEE Floating Point

032 16 8 4

Significand (23 bits)Exponent (8 bits)

Single Precision

03264 16 8 4

Significand (52 bits)Exponent (11 bits)

Double Precision

– Sign bit (s)

– Exponent (e)

– Significand (m)

03264 16 8 4

0x4005000000000000

Representing 2.625:

03264 16 8 4

0x3FB999999999999A

Representing 0.1:

Value:

(-1)s·m·2e

User-Defined Data Types

● Structured
– Arrays and lists: indexed sequences of elements
– Tuples: fixed-length sequence of elements
– Associative arrays: mapping from keys to values (often w/ hashing)
– Records: (name, type) pairs, dot notation, a.k.a. "structs"
– Unions: different types at runtime, tag/discriminant, safety issues

● Ordinal (value <=> integer mapping)
– Booleans and characters
– Enumerations: subset of constants
– Subranges: contiguous subsequence of another ordinal type

Data Types

● Product vs. sum types
– Product types: cross product of other types

● Like a struct in C

– Sum types: union of other types
● Like a union in C

– Haskell examples:

data P = P Float Int -- product type

data S = F Float -- sum type
 | I Int

data Point2D = Point Float Float

data Point = Point2D Float Float
 | Point3D Float Float Float

Arrays and Lists

● Arrays
– Usually homogeneous (with fixed element width)
– Usually fixed-length
– Usually static or fixed stack/heap-dynamic

– Calculating index offsets: base + index * (element_size)

● Lists
– Sometimes heterogeneous
– Usually variable-length
– Usually stack-dynamic or heap-dynamic
– In functional languages: usually defined as head:tail

Multidimensional Arrays

● Multidimensional arrays
– True multidimensional vs. array-of-arrays
– Row-major vs. column-major
– Rectangular vs. jagged
– Calculating index offsets

0 1 2

4 5 6

8 9 10

3

7

11

0 3 6

1 4 7

2 5 8

9

10

11

0 1 2

4 5 6

8 9 10

3

7

11

●

●

●

Row-major Row-major arrray-of-arrays Column-major

Ragged

Character Strings

● Strings are often stored as arrays of characters
● Common operations: length calculation, concatenation,

slicing, pattern matching
● Questions:

– Should the language provide special support?
– Should string length be static or dynamic?

● How should the length be tracked?

– Should strings be immutable?
● Tradeoffs: speed vs. convenience
● Buffer/length overruns are a common source of security

vulnerabilities

Subtypes

● A subtype is a constrained version of an existing type
– Values of the subtype can often be used in place of the

original, but not vice versa
– E.g., in Ada: subtype Small_Int is Integer range 0..100;

Pointers and References

● Pointer: memory address or null / nil / 0
– Example of a nullable type

● Reference: object or value in memory
– Often can be nullable
– Different semantics than pointers
– Strictly safer than pointers

● Implementation
– Allocation/initialization
– Dereferencing
– Arithmetic (allowed for pointers, not references)

Pointers and References

● Design issues
– Scope and lifetime of pointer and associated value
– Type restrictions (must match? void* allowed?)
– Language support (pointers, references, or both?)

● Problems
– Dangling pointer: value has been deallocated but pointer remains

● Dereferencing pointer is invalid (might segfault; might not!)
● Debuggers (e.g., gdb) can help

– Memory leaks: value is still allocated but no longer accessible
● In CPL: lost heap-dynamic variables
● Memory remains allocated; analysis tools (e.g., valgrind) can help

Historical approaches

● Tombstones
– Extra level of indirection: new access pointer for each object
– External pointers only point to tombstones
– When deallocated, tombstone is set to null
– Causes null pointer dereference if ever used

● Locks and keys
– Pointers are stored as (key, address) pairs
– Heap variables store key field as well
– Pointer key and value key are compared for every reference
– If the keys do not match, the access is invalid

Downside: high overhead!

Garbage Collection

● Reference counters
– Track # of references to an object
– Deallocate object when counter hits zero

● Mark-and-sweep
– Pause the application (sometimes unnecessary)
– Initialize indicators for all memory cells to "unmarked"
– Mark reachable heap memory cells by recursively following

pointers from stack and static memory
– Deallocate unmarked cells
– Improvements:

● Generational collection
● Incremental collection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

