

CS 430
Spring 2019

Mike Lam, Professor

Type Checking

Type Checking

● Type system
– Rules about how data values can be used

● Type checking
– Act of ensuring that the type system is adhered to

● Ensure that operands are of compatible types
● Or of equivalent types if coercions aren’t allowed

– Violations are called type errors
● Usually, type errors are considered to be bugs
● Sometimes are reported only as warnings

Type Checking

● Issues to consider:
– Are declarations explicit or implicit?
– Which types are equivalent?
– Are type conversions allowed?
– Can multiple types be used in some places?
– When does type checking occur?
– In general, how pedantic is the process?

Type Checking

● Type declarations
– Explicit: types required

● E.g., int x = 5; float y = 4.2;

– Implicit: types not required (or even not allowed)
● E.g., x = 5; y = 4.2;
● Types are bound at assignment
● However, these types can often be inferred statically

– Tradeoff: readability vs. writability and
expressiveness

Type Checking

● Type equivalence: name vs. structure
– Named types vs anonymous types
– Aliased types (e.g., typedef in C)

– Examples:

typedef float celsius;
typedef float fahrenheit;

celsius a = 25.7f;
fahrenheit b;

b = a; // is this valid?

typedef struct { int x; } box;
typedef struct { int x; } bin;

box c;
c.x = 5;

bin d;
d = c; // is this valid?

struct { int x; } e;

e = c; // what about this?

Type Checking

● Type conversions
– Widening vs. narrowing

● Latter may cause information loss

– Implicit vs. explicit
● Implicit: coercion, e.g., float x = 5;
● Explicit: casting, e.g., int x = (int)3.14;

Polymorphism

● Object-oriented inheritance
– Example of subtypes

● Parameterized functions
– Uses generic type variables
– Example: generic list functions in Haskell

● E.g., head : [a] → a

● Abstract data types
– Models of generic data structure behavior
– Implementation is hidden from user
– Can use parameterized types

● E.g., a queue<float> or queue<int>
● Examples: C++ templates and Java generics

Type Checking

● Static vs. dynamic type checking
– Static: compile time (checked by compiler)

● E.g., C, Haskell

– Dynamic: run time (checked by runtime system)
● E.g., Ruby, Python
● “Duck typing” is a particular form of dynamic typing

– If an object has a method, you can call it! (“if it quacks like a duck...”)

– Hybrid: some static, some dynamic
● E.g., C++, Java

– Tradeoff: overhead vs. flexibility

Type Checking

● Static type rules are sometimes expressed using proof notation
– Premises on top, conclusion at the bottom

Type Checking

● Strong vs. weak typing
– Strong typing: all type errors are detected
– Tradeoff: safety vs. expressiveness
– Terms often used somewhat loosely

● Evidence of strong typing
– Static type checking
– Type inference (even for implicit typing!)

● Evidence of weak typing
– Dynamic type checking
– Automatic type conversions
– Pointer or union types

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

