I'Edy i 1'IFiés iy

TE
Sl e1 ‘=="ey : bool

Type Checking



I Type Checking

* Type system
- Rules about how data values can be used
* Type checking

— Act of ensuring that the type system is adhered to
* Ensure that operands are of compatible types
e Or of equivalent types if coercions aren’t allowed

- Violations are called type errors

e Usually, type errors are considered to be bugs
* Sometimes are reported only as warnings



I Type Checking

e |ssues to consider:

— Are declarations explicit or implicit?

- Which types are equivalent?

- Are type conversions allowed?

- Can multiple types be used in some places?
- When does type checking occur?

- In general, how pedantic is the process?



I Type Checking

* Type declarations
- Explicit: types required
« Eg., int x = 5; float y = 4.2;
— Implicit: types not required (or even not allowed)
e Eg., X =5,y = 4.2,
* Types are bound at assignment
 However, these types can often be inferred statically

- Tradeoff. readabillity vs. writability and
expressiveness



I Type Checking

* Type equivalence: name vs. structure

- Named types vs anonymous types
- Aliased types (e.g., typedef in C)

- Examples:
typedef struct { int x; } box;
typedef struct { int x; } bin;
typedef float celsius; box ¢
typedef float fahrenheit; c . x :'5;
celsius a = 25.7f; bin d;
fahrenheit b; d =c; // 1s this valid?
b =a; // is this valid? struct { int x; } e;

e = C; // what about this?



* Type conversions

— Widening vs. narrowing
* Latter may cause information loss
— Implicit vs. explicit
« Implicit: coercion, e.g., float x = 5;
« Explicit: casting, e.g., int x = (int)3.14;



I Polymorphism

* Object-oriented inheritance
- Example of subtypes
 Parameterized functions

— Uses generic type variables
- Example: generic list functions in Haskell
« E.g.,, head : [a] - a
* Abstract data types

- Models of generic data structure behavior
- Implementation is hidden from user

- Can use parameterized types
« E.g.,, a queue<float> or queue<int>
 Examples: C++ templates and Java generics



I Type Checking

* Static vs. dynamic type checking

- Static: compile time (checked by compiler)
* E.g., C, Haskell

- Dynamic: run time (checked by runtime system)
* E.g., Ruby, Python

* “Duck typing” is a particular form of dynamic typing
- If an object has a method, you can call it! (“if it quacks like a duck...”)

- Hybrid: some static, some dynamic
 E.g.,, C++, Java

- Tradeoff: overhead vs. flexiblility ' ¢



Type Checking

 Static type rules are sometimes expressed using proof notation
- Premises on top, conclusion at the bottom

ID: 7€l
TDec - TTrue TLoc
““FDEC: int ~ true : bool "= TID = 7
['Fey:int I'Fes:int I"Feg, i 1'rrés i
TAdd - i r2 TEq — 2
'Fe; ‘“4+° es : int I'Fe; ‘== e5 : bool
ID: (Fiy Tty =emElr DPrRern FHeiag o LTFEein,
TFuncCall

| et 1 0l TR DN e S



I Type Checking

e Strong vs. weak typing

— Strong typing: all type errors are detected
- Tradeoff: safety vs. expressiveness
— Terms often used somewhat loosely

* Evidence of strong typing

— Static type checking

— Type inference (even for implicit typing!)
* Evidence of weak typing

— Dynamic type checking
- Automatic type conversions
— Pointer or union types



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

