

CS 430
Spring 2019

Mike Lam, Professor

Subprograms and Parameters

Subprograms

● Subprograms are fundamental building blocks for programs
– A form of process abstraction
– Facilitates modularity and code re-use

● General subprogram characteristics
– Single entry point
– Caller is suspended while subprogram is executing
– Control returns to caller when subprogram completes
– Most subprograms have names (but not all!)

● Procedure vs. function vs. method
– Functions have return values
– Methods are associated with classes & objects

Subprograms

● New-ish terms
– Header: signaling syntax for defining a subprogram
– Parameter profile: number, types, and order of

parameters
– Signature/protocol: parameter types and return type(s)
– Prototype: declaration without a full definition
– Referencing environment: variables visible inside a

subprogram
– Call site: location of a subprogram invocation

Parameters

● Formal vs. actual parameters
– Formal: parameter inside subprogram definition
– Actual: parameter at call site

● Semantic models: in, out, in-out
● Implementation models (when/what is copied):

– Pass-by-value (in, value)
– Pass-by-result (out, value)
– Pass-by-copy or pass-by-value-result (in-out, value)
– Pass-by-reference (in-out, reference)
– Pass-by-name (in-out, text)

Example

● Trace x, y, a, b, c, and d after each numbered line:

 foo(a,b,c,d):
1: a = a + 1 # a is passed by value
2: b = b + 1 # b is passed by copy
3: c = c + 1 # c is passed by reference
4: d = d + 1 # d is passed by name

 x = [1,2,3,4]
 y = 2
5: foo(x[0],x[1],y,x[y])

 x = [1,2,3,4] y=2 a=1 b=2 c=&y d=x[y]
1:
2:
3:
4:
5:

Parameter Implementations

● Pass-by-value
– Pro: simple
– Con: costs of allocation and copying
– Often the default

● Pass-by-reference
– Pro: efficient (only copy 32/64 bits)
– Con: hard to reason about, extra layer of indirection, aliasing issues
– Often used in object-oriented languages

● Pass-by-name
– Pro: powerful
– Con: expensive to implement, very difficult to reason about
– Rarely used!

Other Design Issues

● How are formal/actual parameters associated?
– Positionally, by name (“keyword parameters”), or both?

● Are parameter default values allowed (i.e., can a parameter be optional)?
– Any parameter or only the right-most one?

● In what order are parameters handled/copied?
– Generally left-to-right or right-to-left

● Are parameters type-checked?
– Statically or dynamically?

def foo(a=0, b=1)
 puts “a is #{a}, b is #{b}”
end

foo(3, 4)
foo(3)
foo()

def bar(a:0, b:1)
 puts “a is #{a}, b is #{b}”
end

bar(a:3, b:4)
bar(b:4, a:3)
bar(a:3)
bar(b:4)
bar()

Default parameters in RubyName association in Ruby

Other Design Issues

● Are local variables statically or dynamically allocated?
● Can a subprogram have a variable number of parameters?
● Can subprograms be nested?
● Can subprograms be polymorphic?

– Ad-hoc/manual polymorphism via overloading
– Subtype polymorphism
– Parametric polymorphism (e.g., templates or generics)

● Are side effects allowed?
● Can a subprogram return multiple values?

– Unnecessary if robust support for tuples and pattern matching

Other Design Issues

● Can subprograms be passed as parameters?
– How is this implemented?

● Explicit via function pointers or implicit (e.g., lambdas)

– Are subprograms first-class?
● Can they also be returned or stored in variables?

– If nested subprograms are also allowed, which
referencing environment should be used?

● Shallow/dynamic: call that invoked the subprogram
● Deep/static: definition of subprogram
● Ad-hoc: call that passed the subprogram (not used)

Misc. Topics

● Macros
– Call-by-name, “executed” at compile time

● Closures
– A nested subprogram and its referencing environment

● Coroutines
– Co-operating subprograms var q := new queue

coroutine produce
 loop
 while q is not full
 add new items to q
 yield to consume

coroutine consume
 loop
 while q is not empty
 remove/use some items from q
 yield to produce

https://en.wikipedia.org/wiki/Coroutine

def foo(a)
 inner = 10
 return proc {puts "#{a} + #{inner} is #{a + inner}"}
end

p = foo(5)
puts p.class
p.call

Closures in Ruby

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

