Abstraction and Object-Oriented Programming

I Abstraction

* Abstraction is a fundamental concept in CS

* Textbook definition: "a view or representation of an entity
that includes only the most significant attributes"

 Mathematical notion: "equivalence classes"

* Practical reality: the first line of defense against software
complexity!

* Key: finding the most appropriate level of abstraction

¥ B2 spring

» I ExternalServiceServiceSpring.java

org.apache xmlrpcserver

Interface RequestProcessorFactoryFactory > [} ExternalServiceService.java

All Enown Implementing Classes:
RequestProcessorFactoryFactorv.RequestSpecificProcessorFactorvFactorv, ReguestProcessorFactoryFactory.StatelessProcessorFactorvFactory

I Types of abstraction

e Process abstraction

— Structured (block) syntax
- Subprograms and modules

e Data abstraction

- Abstract data types and interfaces
* Polymorphism and generics
- Encapsulation and information hiding

* Classes and objects
* Inheritance

I Abstract data types

* Abstract data type (ADT)

- Set of values (carrier set)

— List of supported operations

e Common operations: constructor, accessors, iterators, destructors
— Not specified: underlying representation

» Exists purely as a mathematical construct

 Examples
- List: append(value), get(index), remove(index)
- Stack: push(value), pop
- Set: add(value), isMember(value), union(otherSet)
- Map: store(key, value), lookup(key)
- Floating-point: add, sub, mul, div, sqrt

I Abstract data types

* Concrete data type
- Implementation of an ADT on a computer
- Specifies value size and format
- Often supports only a subset of values from the ADT

- Most languages support user-defined concrete data types
 Examples (in Java)
- List: ArrayList, LinkedList
Set: HashSet, TreeSet PR
= : HashSet, TreeSe /4 \

- Floating-point: float, double HashSet TreeSet

I Abstract data types

* Abstract data types can be implemented in some
programming languages as data types

— Easier w/ encapsulation mechanisms
- Even easier w/ information hiding mechanisms
— Information hiding implies encapsulation (but not converse)

I Design Issues

* Encapsulation: how is related code and data grouped?
- Header files, namespaces, packages, modules, etc.
— Structs, unions, classes, interfaces
— Modularity and readability; extensibility and maintainability
* Information hiding: should underlying data be exposed?
- Levels: public, private, protected
— Public fields vs. getters and setters
— Convenience/writability vs. safety and extensibility
* Polymorphism: is parameterization possible?
- Specifying parameters
- Specifying restrictions on the parameters
— Power/expressivity vs. readability

I Encapsulation

* Advantages
- Organization
- Separate compilation
- Avoiding name collisions

* Physical vs. logical encapsulation

— Contiguous vs. non-contiguous code

I Encapsulation

Physical

Logical

Naming

Non-naming

Grouping only

Information hiding

Java Class
Java Package

.C, .cpp, or .h file

.h file

.c or .cpp file
Java Class
Java Package

Ruby Class

Ada Package
C++ Namespace
Ruby Module

Ruby Module
C++ Namespace

Ruby Class
Ada Package

Original table courtesy of Dr. Chris Fox

I Object-oriented programming

 Inheritance

- Original motivation: code re-use

- Parent/superclass vs. child/derived/subclass

- “Pure” vs. hybrid

— Overriding methods

- Single vs. multiple inheritance (simplicity vs. power)
— Static vs. dynamic dispatch (speed vs. power)

- Abstract methods and classes

— Non-overridable methods: "final" methods in Java

public class DispatchTestl
{

void foo(Object o) { System.out.println("foo(Object)"); }
void foo(String s) { System.out.println("foo(String)"); }
void bar(Object o) {

foo(o0);
b

public static void main(String[] args) {
(new DispatchTest1()).bar("wWhat gets run?");
b

What will this program print?

I Dispatch

public class DispatchTestl

{
volid foo(Object o) { System.out.println("foo(Object)"); }

void foo(String s) { System.out.println("foo(String)"); }
void bar(Object o) {

foo(o);
}

public static void main(String[] args) {
(new DispatchTest1()).bar("what gets run?");
}

}

public class DispatchTest2
{

static class A {
void foo() { System.out.println("A.foo()"); }
}

static class B extends A {
void foo() { System.out.println("B.foo()"); }

ks

void bar(A a) {
a.foo();

}

public static void main(String[] args) {
(new DispatchTest2()).bar(new B());
}

} What about this one?

I Dispatch

public class StaticDispatchTest

{
volid foo(Object o) { System.out.println("foo(Object)"); }

void foo(String s) { System.out.println("foo(String)"); }
void bar(Object o) {

foo(o);
}

public static void main(String[] args) {
(new StaticDispatchTest()).bar("what gets run?");
}

}

public class DispatchTest3
{

static class A {
static void foo() { System.out.println("A.foo()"); }
}

static class B extends A {
static void foo() { System.out.println("B.foo()"); }

ks

void bar(A a) {
a.foo();

}

public static void main(String[] args) {
(new DispatchTest3()).bar(new B());
}

} How about now?

I Object-oriented implementation

* Dispatch

- Static dispatch: all method calls can be resolved at compile time

- Dynamic dispatch: polymorphic method calls resolved at run time

- Single vs. multiple dispatch (one object’s type vs. multiple objects’ type)
* Class instance record

- List of member variables for objects w/ vtable pointer

— Subclass CIR is a copy of the parents' with (potentially) added fields
 Virtual method table (vtable)

- List of methods w/ pointers to implementations

- Often implemented directly (no CIR) with a single VPTR member field

Heap Static Code Section
vtable ptr e—f———p» foo ——P» Parent: :foo
X @ int bar o
class instance record virtual method table Child::bar

Object-oriented implementation

public class A { public class B extends A {
public int Xx, vy; public int z;
public void draw() { .. } public void draw() { .. }
public int area() { .. } public void sift() { .. }
} }
a = new A(); b = new B();
Heap Static Code Section
A
a vtable ptr e— > draw — P A::draw
X : int area o
.o A::area
y @ int virtual method table
class instance record
B B::draw
b vtable ptr e- > draw
: B::sift
X 1int area o—
y : int sift o
z i int Dynamic dispatch!

class A {

public: class C : public A, public B {
int X, o
: . public:
virtual void init() { .. } int z:

virtual void foo() { .. } virtual void foo() { .. }

} ; .
class B { . virtual void baz() { .. }
public:
int vy; ~ _
virtual void bar { .. } ¢ = new C();
}
Heap Static Code Section
C (C & A part)
c vtable ptr — init ————P A::init
X @ int foo o—
vtable ptr e baz — A::foo
y : int ——
: tbar
z : int C (B part)
bar
C::foo

C::baz

l Muttiple inheritance

* Diamond problem

— If D inherits from B and C with common ancestor A, and all
except D implement method “foo,” which is called?

class D : public B, C {
public: A

void bar() {
foo(); // which foo? foo()

’ e

C++ solution: use ordering from definition foo() foo()

(so B’s foo here) \/
D

Java solution #1: only inherit interfaces
(so no foo here) bar ()

Java solution #2: compiler error
(Java 8 adds default methods for interfaces)

I Inheritance and the stack

e How to handle class instance records on stack in case of
copying to a superclass variable?

— No space for subclass data
— Object slicing: remove subclass data
— Causes a loss of information!

class A { int x; }
class B inherits A { int y; }

new B();

b,; // copy,;, A’s CIR 1s smaller
// b.y 1is lost!
// no way to cast a back

O T
1l

>

I Templates vs. generics

* Templates (C++)

- Compiles different versions w/ mangled names

* Generics (Java)

- Type erasure: compiler changes generic type to Object and inserts

runtime casts (expensive!)

- No runtime difference between HashSet<String> and HashSet<Integer>

« Example: no arrays of generics (array members must be type-checked at runtime)

— Only one set of static member data

template <class T>
class Foo {
T data;
public:
void bar(T x) {
this.data = x;
}

Templates in C++

class Foo<T> {
T data;
void bar(T x) {
this.data = x;
}

Generics in Java

I Reflection

* A language with reflection provides runtime access to type and

structure metadata

- Sometimes with the ability to modify the structure
- Often incurs a severe runtime penalty because of data structures required

* Examples:

— Ruby: methods and send

- Java:. java. lang.Class and java.lang.reflect.Method

"Hello".send(
"str'".methods
.grep(/upcase/)[0])

Reflection in Ruby

try {
System.out.println("str".getClass()

.getMethod("toUpperCase")
.invoke("Hello"));

3

catch (NoSuchMethodException ex) {}

catch (IllegalAccessException ex) {}

catch (InvocationTargetException ex) {}

Reflection in Java

I History of OOP

Simula (1967): data abstractions for simulation and modeling

Smalltalk (1980): objects and messages

C++ (1985): originally “C with classes”

Java (1995) and C# (2000): goal was “C++ but better”
Ruby (1996): pure, dynamic OOP language

Most modern languages have some form of OOP
- Abstract data types

- Inheritance

— Dynamic binding

I Abstraction in C++

Classes and structs

Stack or heap allocation

Manual memory management: constructors and destructors

Header file and implementation file

Visibility: public (default for structs) or private (default for classes)
- "Friend" functions for private access outside class
All forms of polymorphism (parametric via templates)

Static dispatch by default (override via “virtual” keyword)

Multiple inheritance w/ resolution via inheritance order

Namespaces for naming and encapsulation

No reflection by default

I Abstraction in Java

Classes similar to C++

Single inheritance tree (rooted at Object)

No stack allocation (everything on heap)

Automatic memory management
* Visibility modifiers required (public, private, protected, package)

No separate header file

All forms of polymorphism (parametric via generics)

Dynamic dispatch by default (override via “static” keyword)

Interfaces for pseudo-multiple inheritance

Packages for naming and encapsulation

Reflection via java. lang.reflect package

I Abstraction in Ruby

* “Pure” OOP: everything is an object!

* Dynamic classes

* Members can be added/removed at run time

* Multiple definitions of a single class allowed

» Keywords for function visibility (public by default)

 All data is private

- "@" symbol for instance variables
— Attributes accessed through methods

* Polymorphism and dispatch via dynamic types; no overloading
- “Duck” typing: if it has the required methods, it's a valid parameter
* Modules for encapsulation and multiple inheritance (mixins)

e Built-in reflection

I Language comparison

Table 12.1 Designs

DESIGN ISSUE/

LANGUAGE SMALLTALK C++ OBJECTIVE-C JAVA C# RUBY

Exclusivity of objects Al data are Primitive types Primitive types Primitive types Primitive types All data are
objects plus objects plus objects plus objects plus objects objects

Are subclasses They can be They can be They can be They can be They can be No subclasses

subtypes? and usually are and usuallyare and usually are and usually are and usually are are subtypes

Single and multiple

inheritance

Allocation and

deallocation of objects

Dynamic and static

binding

Nested classes?

Initialization

Single only

All objects are
heap allocated;
allocation is
explicit and
deallocation is
implicit

All method
bindings are
dynamic
No

Constructors
must be
explicitly called

if the derivation
is public

Both

Objects can

be static, stack
dynamic, or
heap dynamic;
allocation and
deallocation are
explicit
Method
binding can be
either

Yes

Constructors
are implicitly
called

Single only, but
wiee effects
«ith protocols

4t objects are
heep dynamic;
allocarion is
explicit and
deallocation is
implicit

Method
binding can be
either

No

Constructors
must be
explicitly called

Single only, but
some effects
with interfaces

All objects are
heap dynamic;
allocation is
explicit and
deallocation is
implicit

Method
binding can be
either

Yes

Constructors
are implicitly
called

Single only, but
some effects
with interfaces

All objects are
heap dynamic;
allocation is
explicit and
deallocation is
implicit

Method
binding can be
either

Yes

Constructors
are implicitly
called

Single only, but
some effects
with modules

All objects are
heap dynamic;
allocation is
explicit and
deallocation is
implicit

All method
bindings are
dynamic
Yes

Constructors
are implicitly
called

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

