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Mechanical Computers
● Difference engine

– Designed by Charles Babbage, an English mathematician
– Ada Lovelace (one of his collaborators) is often credited as the first 

computer programmer
– https://www.youtube.com/watch?v=BlbQsKpq3Ak

● Fire control computers
– https://www.youtube.com/watch?v=s1i-dnAH9Y4

Difference engine Fire control computer

https://www.youtube.com/watch?v=BlbQsKpq3Ak
https://www.youtube.com/watch?v=s1i-dnAH9Y4


  

von Neumann Architecture

● Fetch-Decode-Execute cycle
● Primary hardware architecture
● Heavily influenced early programming languages
● Most programming languages are procedural because this 

is the easiest to translate into machine code for von 
Neumann architectures



  

Konrad Zuse's Plankalkül (1945)

● "Program Calculus" or "Plan Calculus"
● Designed for Zuse's electromechanical Z4 machine
● Many innovative concepts

– Data types and arrays
– Iteration and control flow

● Verbose written style
– Originally 2-dimensional

● Not widely known at the time
– World War II obscured parallel development efforts in 

Germany, Great Britain, and the U.S.

  | A + 1 => A
V | 4        5
S | 1.n      1.n

 A[5] = A[4]+1

  | X + 1 => X
V | 1        1
S | 1.n      1.n

    X = X+1



  

Early Digital Computing ('40s-'50s)

● Every machine had a different set of binary instructions and data 
addressing modes
– Low readability and writability; programming was HARD!
– Programs were very rigid because of explicit memory addresses
– Very little portability between machines
– No hardware support for floating-point arithmetic

● Interpreted “psuedocodes” helped address these issues
– Sometimes called “automatic programing”
– Short Code (BINAC-1949) by John Mauchly
– Speedcoding (IBM 701-1954) by John Backus
– UNIVAC compiling systems A-0, A-1, and A-2 (1953)

● Development team lead by Grace Hopper
● Psuedocode expanded into machine code via macros
● Precursor to assembly language

Grace Hopper



  

Fortran (1957)

● “FORmula TRANslation”
● Primary goal: execution speed
● Designed by John Backus at IBM

– Practical alternative to assembly language
– First widely-accepted compiled high-level language

● Original hardware: IBM 704 mainframe
– Hardware floating-point implementation

● Very restrictive by today's standards
– No block structure
– One loop structure (DO)
– Punchcard-dictated formatting
– Implicit data types based on variable names IBM 704

Punch card



  

Fortran (1957)

● Goal: half the efficiency of hand-written machine code
– Largely successful!
– All modern high-performance compiler groups (Intel, Portland Group, etc.) 

maintain excellent Fortran support
● Highlights importance of a language's available compilers

– Fortran remains the dominant language in high-performance computing, 
originally because of excellent compilers; more recently it is also because of 
the amount of existing legacy code

● Significant versions:
– FORTRAN IV (1962): platform-independent
– FORTRAN 77: block structures; broke backwards compatibility
– Fortran 90: relaxed formatting guidelines
– Fortran 2003: object-oriented support 
– Fortran 2008 / 2018: more parallel/concurrency features



  

ALGOL (1960)

● “ALGOrithmic Language”
● Primary goal: independent general-purpose language
● Joint-effort design: ACM in the U.S. and GAMM in Germany

– Generalization of Fortran features w/ several new contributions
– First language syntax definition written in Backus-Naur Form

● Became widely used to describe algorithms in papers and publications
– Influenced many languages over the subsequent decades
– ALGOL 68 introduced user-defined data types built from primitives

● Never widely used in practice
– Early BNF was difficult to understand
– Hard to implement; too many confusing and overly-flexible constructs
– No support from IBM (ALGOL was a competitor to Fortran)

● Question for the ages: what if ALGOL had "won?"



  

COBOL (1960)

● “COmmon Business-Oriented Language”
– U.S. Department of Defense effort
– Descendant of FLOW-MATIC data-processing language

● Also developed by Grace Hopper

● Primary goal: easy for non-programmers to use
– Resembled natural English and was very verbose
– Used decimal arithmetic
– Poor support for structured programming
– First true implementation of records

● Gained tremendous momentum
● Lots of legacy code

– Estimated 200 billion lines in 1997!
● No major influence on subsequent PL design

           OPEN INPUT sales, OUTPUT report-out
           INITIATE sales-report
 
           PERFORM UNTIL 1 <> 1
               READ sales
                   AT END
                       EXIT PERFORM
               END-READ
 
               VALIDATE sales-record
               IF valid-record
                   GENERATE sales-on-day
               ELSE
                   GENERATE invalid-sales
               END-IF
           END-PERFORM
 
           TERMINATE sales-report
           CLOSE sales, report-out

Sample COBOL Program



  

PL/I (1964)

● Programming Language One
● Primary goal: "Jack of all trades"

– Combined best pieces of ALGOL, FORTRAN, and COBOL
– Intended to replace them as well as Lisp and assembly

● Not widely used today
● However, it pioneered several lasting features:

– Concurrent subprograms
– Exception handling
– Optional recursive subprograms
– Pointers
– Cross-sections (slices) of arrays



  

BASIC (1964)

● “Beginner's All-purpose Symbolic Instruction Code”
● Primary goal: simple and easy to learn
● Designed for non-science students

– Emphasis on development time, rather than execution time
– Prophetic, although not recognized as such at the time

● First widely used on time-shared machines
● Descendants: QuickBasic and Visual Basic

REM SAY HELLO
10 PRINT "HELLO WORLD!"
20 GOTO 10



  

APL (1964)

● "A Programming Language"
● Early dynamic language designed by Kenneth Iverson
● Originally designed to describe computer architectures
● Large number of operators

– Specialized keyboard
– Very concise code
– Very unreadable code!

● Game of life:
– life←{↑1 ⍵ . 3 4=+/,¯1 0 1 .⊖¯1 0 1 .⌽ ⍵}∨ ∧ ∘ ∘ ⊂



  

Early Object-Oriented Languages

● SIMULA (1967)
– Primary goal: system simulation
– Required restartable subprograms (coroutines)
– Introduced a "class" construct for coroutine implementation
– Precursor to object-oriented languages

● Smalltalk (1972)
– Based on SIMULA
– First major successful object-oriented language
– Objects w/ state send messages to each other
– Large influence on history of graphical user interfaces (GUIs)



  

Pascal (1970)

● Based on ALGOL 60
● Designed by Niklaus Wirth
● Primary goal: simplicity and safety
● Widely used as an educational language
● Many extended dialects

– Turbo Pascal
– Object Pascal (Delphi)
– Free Pascal



  

The Godfather: C (1972)

● Designed for systems programming
– Influenced by ALGOL 68
– Designed by Dennis Ritchie and others at Bell Labs
– Based on a very similar (but untyped) language called B

● Tightly coupled with UNIX operating system
– Close to the hardware
– Simple but powerful constructs
– Minimal type checking (both good and bad!)
– Lack of true object-oriented capabilities

● Standards
– Kernighan and Ritchie book (1978)
– ANSI/ISO: C89/C90 (1989), C99 (1999), C11 (2011), C18 (2018)

Ken Thompson and Dennis Ritchie



  

Ada (1980)

● Originally designed for embedded systems
– Another Department of Defense effort
– Monolithic design process (1974-1980)
– Named after Ada Lovelace

● Primary goal: good PL principles
– Enforce software engineering best practices
– Largely succeeded

● Large, complex, and hard to implement
– Design published in 1980 and standardized in 1983
– The first useful compiler was not finished until 1985

● Could not compete with C
– Many people conjecture that software today would be much safer in 

general if Ada (and its principles) had gained more widespread support

Augusta Ada Lovelace



  

C++ (1985)

● Extended C with object-oriented features
– Bjarne Stroustrup at Bell Labs

● Primary goal: speed and flexibility
– Originally "C with classes" preprocessor
– Adds objects, templates, exceptions, and lots more
– Few programmers use every feature of C++

● Became tremendously popular as OOP flourished
– ANSI standardized in 1998
– Right place, right time
– Even influenced post-1989 versions of C
– Major revision in 2011 (C++11)

Bjarne Stroustrup



  

Java (1995)

● Originally designed for embedded applications
● Primary goal: reliability and portability
● Based on C++ but features were simplified and reduced

– Eliminated pointers and added automatic garbage collection
– Cleaned up templates (now "generics") and exceptions
– Much stronger type checking
– Often used for CS education

● Programs run on the Java Virtual Machine
– Core runtime system that must be implemented for every new architecture
– Source code is compiled to "byte code," which is interpreted by the JVM
– Individual programs are very portable



  

.NET Languages (starting 2002)

● Common Language Infrastructure (CLI)
– Language-neutral runtime platform
– Common Intermediate Language (CIL) and Portable Executable (PE) format

● C# is a descendent of C++ and Java
– Based on Java
– Re-introduced some C++ features (but not multiple inheritance!)

● VB.NET is a descendant of BASIC
– Emphasis on writability and business applications

● J# and JScript.NET are transitional languages for Java/Javascript users
● F# is a multi-paradigm (including functional) language
● ASP.NET is a server-side web app framework
● If you're in the Windows world, .NET is great

– Includes excellent developer support via the Visual Studio suite



  

Other Notable C/C++ Descendants

● Objective C (1983)
– Descendant of C and Smalltalk; primarily used today by Apple

● D (2006)
● Go (2009)

– Developed at Google by Ken Thompson and others
● Rust (2012)

– Multi-paradigm client/server and systems language from Mozilla
● Common theme: a “modern” redesign of C/C++

– Without the major problems and headaches
– Added features for greater safety, concurrency, etc.
– None have yet succeeded in displacing C/C++



  

Dynamic Scripting Languages

● Perl (1987) – Larry Wall
– Originally designed for text processing
– Powerful but ugly: the “Swiss Army chainsaw” of PL
– Widely used across many domains, especially CGI programming

● Python (1991) – Guido van Rossum
– Strong design philosophies
– Large standard library
– Python 3.0 (2008) is backwards-incompatible

● Ruby (1995) – Yukihiro Matsumoto
– Designed for "productivity and fun"
– Pure object-oriented multi-paradigm language
– Strong self-inspection features ("reflection")



  

Dynamic Scripting Languages

● Javascript (1995) – Brendan Eich at Netscape
– Embedded web browser and document programming
– Not related to Java!
– Widely used, but has been a source of many security flaws
– Many popular extensions: Node.js, JSON, jQuery, etc.

● Others: Bash, TCL, VBScript, PHP, Lua
● General themes of dynamic scripting languages:

– Interpreted (sometimes compiled for speed)
– Powerful, expressive, and flexible syntax
– Dynamic and/or "duck" typing
– Automatic memory management
– Anyone who doesn't use your preferred scripting language is clearly 

wrong ignorant and must be converted educated



  

Programming Paradigms

● Procedural
– Includes all previously-discussed languages
– And probably every language you saw before 430
– It's definitely here to stay (at least for the foreseeable future)
– But it's not the only paradigm

● Functional
– LISP, Scheme, and descendants (including Haskell)

● Declarative / Logic
– Prolog and descendants



  

LISP (1959)

● LISt Processing language
– John McCarthy at MIT

● Functional language based on mathematics (lambda calculus)
– No variables or global state

● No side effects! This makes reasoning about program correctness much 
simpler and more powerful.

– All computation involves applying functions to inputs
– Iteration via recursion
– Data types: atom and list (atom + list)
– Symbolic computation

● Used primarily for AI research
 (defun factorial (n)
   (if (= n 0) 1
       (* n (factorial (- n 1)))))



  

Descendants of LISP

● Common Lisp (1984/94)
– Consolidation of many LISP variants
– Multi-paradigm (supports procedural programming as well)

● Scheme (1970s)
– Designed by Guy Steele and Gerald Sussman
– Simplification of LISP; often used as a teaching language

● ML - MetaLanguage (1973)
– Strongly-typed proof language designed by Robin Milner
– Later extended at INRIA (France) to Caml and OCaml

● Haskell (1990)
– Named after influential logician Haskell Curry
– Purely functional language w/ strong typing and lazy evaluation



  

Prolog (1972)

● Declarative / Logic programming language
● Based on first-order predicate logic

– Built-in goal-directed inference engine
– Given facts and implications
– Uses inference to infer the truth of queries

● Drawbacks
– Can be difficult to understand
– Solutions are often inefficient and/or of limited usefulness

mother(alice, sally).
 
father(tom, sally).
father(tom, erica).
father(mike, tom).
  
parent(X, Y)  :- father(X, Y).
parent(X, Y)  :- mother(X, Y).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).

?- sibling(sally, erica).
Yes

?- parent(alice, erica).
No



  

Functional and Logic Paradigms

● Functional languages are still a niche
– Concepts are extremely useful
– Gaining popularity as software becomes more complex and 

concurrency becomes more important
– Many procedural languages are adding functional features (including 

heavy-hitters like C# and Java)
– Good tool to know

● Logic languages are an even smaller niche
– Rarely used in practice
– Useful for pattern matching w/ rules (e.g., IBM Watson)
– Curry-Howard isomorphism: “programs are proofs”
– Good tool to be aware of



  

Language Family Tree



  

 

“There are only two kinds of programming 
languages; those people always [complain] 

about and those nobody uses.”

                                         – Bjarne Stroustrup
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