
Variables and Scopes

CS 430 :: Spring '19

Prof. Bowers

What is a variable?

int x = 5;

What do we need to know about the variable above to use it / make this
code work?

Variables

A variable is an abstraction of a memory cell.

1. name

2. address(r‑value)

3. value (l‑value)

4. type

5. lifetime

6. scope

How many variables are involved in the following?

Object o = new Object()?

Variables

A variable is an abstraction of a memory cell.

1. name

2. address (r‑value)

3. value (l‑value)

4. type

5. lifetime

6. scope

Think about the following assignment:

x = y = 5;

Why is the '=' right‑associative? Why doesn't 5 = y work? Why are
the address and value called the r‑value and l‑value?

Binding

Binding refers to making an association between an attribute and an
entity. Binding can happen at language design time, language
implementation time, compile time, load time, link time, or run time.

int count = getUserInput();
count = count + 1;

Type of count is bound at compile time.

Value of count is bound at run‑time.

Meaning of + is bound at compile‑time.

Representation of 1 is bound at compiler design‑time.

Possible values of count are bound at compiler design‑time.

Binding Times

Bindings can be either static meaning they occur before runtime and
cannot be changed during program execution or dynamic meaning they
occur during runtime and are changeable during execution.

Examples of type bindings.

Java (static type binding)

int x = 5; // x is now an int forever and always
x = "hello"; // Compiler error, x is an int

JavaScript (dynamic type binding)

var x = 5; // x is an int.
x = "hello"; // Now it's a String.

Java 10 (Implicit static type binding)

var x = 5;
x = "hello"; // Compiler error, x is an int

Kotlin (Same as Java 10 but no ;‑))

var x = 5
x = "hello" // Compiler error, x is an int

Evaluation of Dynamic type binding.

Causes less reliability in programs.

Type checking occurs at run‑time leading to
Slower programs

More memory intense programs.

Variable allocation

Variables are allocated when the variable is bound to memory and
deallocated when the binding is released.

The lifetime of a variable is the time between allocation and
deallocation.

static variables are allocated before program execution and
remain bound until program termination.

class Foo { static int bar = 5; }

Stack‑dynamic variables are allocated as part of the stack frame
when the frame is pushed to the stack on a function/method call

int foo() {
 int x = 5;
 System.out.println(7);
 int y = 8;
 System.out.println(x + y);
}

Heap‑dynamic variables are allocated on the heap.

Explicitly with new :

x = SomeClass.new # Ruby heap allocation

Implicitly with literals.

x = [1, 2, 3, 4] # Python list allocation

Scope

Variables are local in the program unit or block in which they are
declared.

A variable is visible if it can be referenced.

public class X {
 public int x = 5;
 public void foo() {
 int y = 7;
 // What variables are visible?
 // What variables are local?
 }
}

Scope

Variables are local in the program unit or block in which they are
declared.

A variable is visible if it can be referenced.

public class X {
 public int x = 5;
 public void foo() {
 if ("".equals("")) {
 int y = 5;
 // What variables are visible?
 // What variables are local?
 }
 int y = 7;
 }
}

Scope: Shadowing

Variables are shadowed if their name is the same as another
visible variable. How do we resolve these issues?

public class X {
 public int x = 5;
 public void foo() {
 int x = 7;
 System.out.println("What is this? " + x);
 }
}

Referencing environment

The referencing environment at a point in the program is the list of
variables visible at that point (non‑shadowed).

public class X {
 public int x = 5, int y = 7;
 public void foo() {
 int x = 7;
 // Point A
 }
}

Referencing environment

public class X {
 public int x = 5, int y = 7;
 public void foo() {
 int x = 7;
 // Point A
 }
}

Referencing environment at Point A is {X.foo.x, X.y} .

Example: Shadowed global variable in
C++

#include <iostream>

int x = 5;

int main() {
 int x = 6;
 std::cout << x << std::endl;
 std::cout << ::x << std::endl;
 return 0;
}

Example: Python::Function‑level Scope

def foo():
 x = 5
 if x == 5:
 y = 3
 print x + y # y is in scope

foo() # prints out 8
print x + y # Error: x and y are stack-dynamic and in foo

Example: Python::Global
Variables::establishing a local variable

x = 5
def bar():
 print(x)

def baz():
 x = 7
 print(x)

bar()
baz()
print(x)

What get's printed?

Example: Python::Global
Variables::establishing a local variable

x = 5
def bar():
 print(x)

def baz():
 x = 7
 print(x)

bar()
baz()
print(x)

Output:

5
7
5

Example Python::Global Variables::global
keyword

Output:

7

x = 5
def bam():
 global x # Global keyword tells python to use the global x for this function.
 x = 7
bam()
print(x)

Example Python::Global Variables::can't
mix and match

x = 5
def hipster():
 print(x)
 x = 4
 print(x)
hipster() # Error hipster() tried to use
 # x before it was cool

Block scopes vs. Function scopes

int foo() {
 int x;
 if (someTest()) { x = 5; }
 else { x = 7; }
 return x;
}

def foo()
 if someTest()
 x = 5
 else
 x = 7
 end
 return x
end

Block scopes vs. Function scopes

Bad Java:

int foo() {
 if (someTest()) { int x = 5; }
 else { int x = 7; }
 return x; // Compiler error
}

If Ruby had block level scoping:

def foo()
 x = 0 # Dummy declaration.
 if someTest()
 x = 5
 else
 x = 7
 end
 return x
end

Nested procedures::Python Example 1

def foo():
 x = 5
 def bar():
 x = 7
 bar()
 print(x)

foo() # prints 5

Nested procedures::Python Example 2

def foo():
 a = 5
 b = 7
 def bar():
 b = 8
 print(a, b) # prints 5 8
 bar()
 print(a, b) # prints 5 7

Nested procedures::Python Example 2

def foo():
 a = 5
 b = 7
 def bar():
 print(a, b) # error variable 'b' referenced before assignment
 b = 8
 bar()
 print(a, b)

Nested procedures::Javascript 2 (Explicit
Declaration)

function foo() {
 var x = 5;
 function bar() {
 var x = 7;
 }
 bar();
 alert(x);
}
foo(); // Alerts 5
alert(x); // Error

Nested procedures::Javascript 2 (Explicit
Declaration)

function foo() {
 var x = 5;
 function bar() {
 x = 7;
 }
 bar();
 alert(x);
}
foo(); // Alerts 7
alert(x); // Error

Nested procedures::Javascript 3 (Implicit
Declaration)

function foo() {
 x = 5;
 function bar() {
 x = 7;
 }
 bar();
 alert(x);
}
foo(); // Alerts 7
alert(x); // Alerts 7 (variable x is global)

Cons of this approach?

Static vs. Dynamic Scoping

Static scoping is determined by the structure of the program and
can be determined by looking at the code.

Dynamic scoping is determined by the call‑stack and can only be
determined at run‑time. (You have to work backwards through the
call stack to find first reference to a variable of that name.)

Static vs. Dynamic Scoping Examples

 1 func main() {
 2 var x = 5
 3 y = 2
 4 // location A
 5 func g() {
 6 var x = 12
 7 z = 8
 8 f() // Location B
 9 }
10 func f() {
11 println(x) // Location C
12 }
13 g()
14 }

What is the output with static scope? What is the output with dynamic
scope? What are the referencing environments at A, B, and C in both
cases?

