
Function Programming in Haskell (CS 430 notes)
"Writing functional code doesn’t require a shift to a functional programming language such as
Scala or Clojure [or Haskell] but rather a shift in the way you approach problems." - Neal Ford
(Functional Thinking, 2014)

"Let’s say for a moment that you are a lumberjack. You have the best axe in the forest, which
makes you the most productive lumberjack in the camp. Then one day someone shows up
and extols the virtues of a new tree-cutting paradigm, the chainsaw. [...] Demonstrating your
expertise with the previous tree-cutting paradigm, you swing it vigorously at a tree—without
cranking it. You quickly conclude that this newfangled chainsaw is a fad, and you return to
your axe. Then, someone appears and shows you how to crank the chainsaw. The problem
with a completely new programming paradigm isn’t learning a new language. [...] The
tricky part is learning to think in a different way." - Neal Ford (Functional Thinking, 2014)

"Once garbage collection became mainstream, it simultaneously eliminated entire categories
of hard-to-debug problems and allowed the runtime to manage a process that is complex
and error-prone for developers. Functional programming aims to do the same thing for the
algorithms you write, allowing you to work at a higher level of abstraction while freeing the
runtime to perform sophisticated optimizations." - Neal Ford (Functional Thinking, 2014)

Functional programming:

"what" instead of "how"
definitions instead of algorithms
functions instead of statements
recursion instead of iteration
parameters instead of variables
no state (or strictly managed state)

Haskell:

strong, static typing w/ inference
pure w/ no side effects
first-order functions
built-in lists w/ comprehensions
filter, map, fold/reduce
pattern matching
currying and partial application
non-strict w/ lazy evaluation
monads for state

add x y = x + y
add3 = add 3
add3 7



:t head
:t tail
head [1,2,3]
tail [1,2,3]

[2..]
take 5 [2..]





 
-- cat utility one-liner, courtesy of @cattheory on Twitter
--
main = getArgs >>= mapM_ (readFile >=> putStrLn)

References:

CPL Ch.15
https://www.safaribooksonline.com/library/view/functional-thinking/9781449365509/
https://www.safaribooksonline.com/library/view/real-world-haskell/9780596155339/

https://www.safaribooksonline.com/library/view/functional-thinking/9781449365509/
https://www.safaribooksonline.com/library/view/real-world-haskell/9780596155339/

