Function Programming in Haskell (CS 430 notes)

"Writing functional code doesn’t require a shift to a functional programming language such as
Scala or Clojure [or Haskell] but rather a shift in the way you approach problems." - Neal Ford
(Functional Thinking, 2014)

"Let’s say for a moment that you are a lumberjack. You have the best axe in the forest, which
makes you the most productive lumberjack in the camp. Then one day someone shows up
and extols the virtues of a new tree-cutting paradigm, the chainsaw. [...] Demonstrating your
expertise with the previous tree-cutting paradigm, you swing it vigorously at a tree—without
cranking it. You quickly conclude that this newfangled chainsaw is a fad, and you return to
your axe. Then, someone appears and shows you how to crank the chainsaw. The problem
with a completely new programming paradigm isn’t learning a new language. [...] The
tricky part is learning to think in a different way." - Neal Ford (Functional Thinking, 2014)

"Once garbage collection became mainstream, it simultaneously eliminated entire categories
of hard-to-debug problems and allowed the runtime to manage a process that is complex
and error-prone for developers. Functional programming aims to do the same thing for the
algorithms you write, allowing you to work at a higher level of abstraction while freeing the
runtime to perform sophisticated optimizations." - Neal Ford (Functional Thinking, 2014)

Functional programming:

"what" instead of "how"
definitions instead of algorithms
functions instead of statements
recursion instead of iteration
parameters instead of variables

no state (or strictly managed state)

Haskell:

strong, static typing w/ inference
pure w/ no side effects
first-order functions

built-in lists w/ comprehensions
filter, map, fold/reduce

pattern matching

currying and partial application
non-strict w/ lazy evaluation
monads for state

add x y = x + vy
add3 = add 3
add3 7

:t head
it tail
head [1,2,3]
tail [1,2,3]

[2..]
take 5 [2..]

Example 2-1. Typical company process (in Java)

package com.nealford.functionalthinking.trans;
import java.util.List;

public class TheCompanyProcess {
public String cleanNames(List<String> listOfNames) {
StringBuilder result = new StringBuilder();
for(int 1 = 0; 1 < listOfNames.size(); i++) {
if (listOfNames.get(i).length() > 1) {
result.append(capitalizeString(listOfNames.get(i))).append(",");

s’ 3

}
}
return result.substring(0, result.length() - 1).toString();
}

public String capitalizeString(String s) {
return s.substring(®, 1).toUpperCase() + s.substring(il, s.length());
}

Example 2-3. Processing functionally in Scala

val employees = List("neal", "s", "stu", "j", "rich", "bob", "aiden", "j", "ethan",
"liam", "mason", "noah", "lucas", "jacob", "jayden", "jack")

val result = employees
.filter(_.length() > 1)
.map(_.capitalize)
.reduce(_ + "," +)

Example 2-4. Java 8 version of the Company Process

public String cleanNames(List<String> names) {
if (names == null) return "";
return names
.stream()
.filter(name -> name.length() > 1)
.map(name -> capitalize(name))

n n

.collect(Collectors.joining(","));
}

private String capitalize(String e) {
return e.substring(®, 1).toUpperCase() + e.substring(l, e.length());
}

In the Scala version, I can make the code parallel by adding par to the stream, as shown
in Example 2-8.

Example 2-8. Scala processing in parallel

val parallelResult = employees
.par
.filter(_.length() > 1)
.map(_.capitalize)
.reduce(_ + "," + _)

I can make an almost identical change to the Java 8 version to achieve the same effect,
as shown in Example 2-9.

Example 2-9. Java 8 parallel processing

public String cleanNamesP(List<String> names) {
if (names == null) return "";
return names
.parallelStream()
.filter(n -> n.length() > 1)
.map(e -> capitalize(e))
.collect(Collectors.joining(","));

11214
l l l Map 28 /i
28147

Figure 2-2. Mapping a function onto a collection

Operation Accumulator List
+ 0 3 5 7 3 1
8 7 3 1
15 3 1
18 1
19

Figure 2-3. Fold operation

-- cat utility one-liner, courtesy of @cattheory on Twitter

main = getArgs >>= mapM_ (readFile >=> putStrLn)
References:

e CPL Ch.15
e https://www.safaribooksonline.com/library/view/functional-thinking/9781449365509/
e https://www.safaribooksonline.com/library/view/real-world-haskell/9780596155339/

https://www.safaribooksonline.com/library/view/functional-thinking/9781449365509/
https://www.safaribooksonline.com/library/view/real-world-haskell/9780596155339/

