

CS 430
Spring 2020

Mike Lam, Professor

Expressions and Control Structures

x=a+b+c

y=sin (x)

E=mc2

eix=cos x+i sin x

Expressions

● Expression: specification of computation
– Fundamental to high-level languages
– Form/syntax expressed using BNF grammars
– Four main components:

1) Operations

2) Operands

3) Parentheses

4) Function calls

Expressions

● Operators: symbols representing computation
– Unary vs. binary vs. ternary
– Infix vs. prefix vs. postfix
– Precedence
– Associativity (left or right)
– Overloading
– Short-circuit boolean operators

Expressions

● Operands: input data for computation
– Evaluation order (left-to-right or right-to-left)
– Type conversions

● Implicit vs. explicit
● Narrowing vs. widening

– Errors
● Overflow and underflow
● Division by zero
● Floating-point issues (e.g., NaN, subnormal)

Expressions

● Parentheses
– Explicit precedence and associativity
– Tuple creation
– Function invocation (in some languages)

● Function calls
– Side effects: a function changes a parameter or a

non-local variable
– Referential transparency: expressions with the same

value can be substituted for each other

Assignment Statements

● Symbol and ambiguity with equality operator
– "=" vs. ":=" vs. "==" vs. "←"
– Assignments as expressions; good idea?

● Conditional targets (ternary LHS)
– (n > 5 ? a : b) = n*2

● Compound assignments
– Shortened forms of an assignment: "+=" and "++"

● Multiple assignments
– a,b = c/2,c%2 a,b = b,a

Evaluating Expressions

● Construct expression tree (e.g., parse the expression)
– Build tree from root (“which operation is done last?”)
– Use precedence and associativity to guide you

● Evaluate using a post-order traversal
– Use evaluation order to guide you
– Track side effects as you go

● Example:
– Use standard prec., assoc. and eval order

– Suppose k=5, n=2

– Suppose a={1,3,6,8,11,14,16}

– Evaluate a[k--]+8*n-k

Method originally described by Dr. Christopher Fox

5
k = 5

5

14

28

16

30
4

26

X 4

&a

Control Structures

● Control flow path: sequence order of executed instructions
● Control structure: control statement and its associated flow path
● Selection statements (e.g., if/then/else, switch/case)

– Choose between alternative control flow paths

● Iteration statements (e.g., do, while, for, until)
– Repeatedly execute a control flow path

● How many kinds of control statements?
– Many: higher expressivity
– Few: higher readability, learnability, and orthogonality

Selection Structures

● Two-way selection (if/then)
– Inclusion of "else" clause
– Blocks often delimited by braces, keywords (e.g., "begin", "end") or

indentation
– Nesting issues

● Multiple selection (switch/case)
– Form ("if/elseif/else" vs. "switch/case")

– Case value types
– Multiple execution
– Fallthrough
– Default cases
– Efficient implementation using jump tables

Iteration Structures

● Control form: logic vs. counter vs. user-controlled vs. iterator-based
– Counter loop parameters: loop variables, initial/terminal values, step sizes
– Counter variable in scope outside loop? (no, starting with Ada)

● Control location: pre-test vs. post-test vs. user-defined
● Examples:

– While loop:
– Do-while loop:
– For loop:
– For-each “enhanced for” loop:

● Functional languages: recursion instead of iteration

logic pre-test

logic post-test

counter pre-test

iterator-based pre-test

Language Design

● Can iteration structures have multiple entries?
– General answer: no!
– Increase in flexibility/expressiveness is small relative to

decrease in readability
● Can iteration structures have multiple exits?

– For most procedural languages: yes

– Same as "should goto or break be included?"

Minimally-Sufficiency Constructs

● Böhm and Jacopini (1966)
– “Structured program theorem”
– Strictly necessary: 1) sequencing, 2) two-way logical

selection, and 3) logical iteration
● Can implement ALL flowchart-representable programs
● Alternatively: a selectable goto statement

– E.g., “if (E) goto L1” goto code from CS 261!

– Facilitates automated translation of block-structured code
● Use “templates” to guide translation

Minimally-Sufficient Constructs

if statement: if (E) B1

 << E code >>

 if E goto l1

 goto l2

 l1:

 << B1 code >>

 l2:

Minimally-Sufficient Constructs

if statement: if (E) B1 else B2

 << E code >>

 if E goto l1

 goto l2

 l1:

 << B1 code >>

 goto l3

 l2:

 << B2 code >>

 l3:

Minimally-Sufficient Constructs

while loop: while (E) B

 l1: ; CONTINUE target

 << E code >>

 if E goto l2

 goto l3

 l2:

 << B code >>

 goto l1

 l3: ; BREAK target

Minimally-Sufficient Constructs

for loop: for V in E1, E2 B

 << E1 code >>

 << E2 code >>

 V = E1

 l1:

 if (V >= E2) goto l2

 << B code >>

 V = V + 1 ; CONTINUE target

 goto l1

 l2: ; BREAK target

Minimally-Sufficient Constructs

● Use only the following constructs:
– S → S; S
– S → if (E) { S } else { S }
– S → while (E) { S }
– S → <assignment statement>
– E → <boolean expression>

● Rewrite the following Ruby code:

3.times do
 x = x * 2
end

until a >= b
 a += 5
end

if x > 90 then
 g = 'A'
elsif x > 80 then
 g = 'B'
elsif x > 70 then
 g = 'C'
else
 g = 'D'
end

1.upto(10) do |i|
 y = y + i
end

case (n % 3)
when 0
 d = 1
when 1
 d = 2
when 2
 d = 3
end

Greatest Argument in PL History

● "Should languages provide a goto statement?"
– Pro: extremely powerful construct – high expressiveness and

writability
– Against: without restrictions, can make programs very difficult to

understand – low readability and maintainability
● Classic 1968 CACM letter by Edsger Dijkstra: "Go To

Statement Considered Harmful"
– Widely misunderstood
– Original title: "A Case Against the Goto Statement"

– Criticized excessive use of goto

– Consensus: structured control flow is safer
● Use control structures, exceptions, or tail recursion instead
● Only C descendants tend to have goto statements these days

Guarded Commands

● Dijkstra (1975): guarded selection and iteration
statements: if/fi and do/od
– More than one boolean condition may be true
– Control flow path is chosen non-deterministically out of

the available true conditions
– Pro: sometimes more elegant and easily proven correct
– Con: greatly-increased complexity and lowered readability

Guarded Commands

● Maximum of (x,y):
– if x >= y → max := x

– [] y >= x → max := y

– fi

● Sorting four integers (q1, q2, q3, q4):
– do q1 > q2 → temp := q1; q1 = q2; q2 := temp;

– [] q2 > q3 → temp := q2; q2 = q3; q3 := temp;

– [] q3 > q4 → temp := q3; q3 = q4; q4 := temp;

– od

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

