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Mike Lam, Professor

Programming
Languages

Opening challenge: how many programming languages can you name?



  

Overview

● Programming language (PL)
– Tool for formal expression of problems and solutions
– Audience: humans and machines

● General topics
– Syntax  (what a program looks like)
– Semantics  (what a program means)
– Implementation  (how a program executes)



  

Why are PLs needed?

● Humans excel at approximate and contextual understanding
– Imprecise language is often easier and quicker
– Ex: "Meet you at El Charro at 6?"
– vs. "I request your presence at 1480 S. Main St., Harrisonburg, VA, 

at 18:30 GMT-5 on 2021-01-20"

● Machines are not humans (and thus less forgiving)
– They are (currently) slower and less accurate at language 

recognition and interpretation

– Thus, programming in a natural language is a Bad Idea
TM



  

Why so many PLs?

● Surprising result: all languages are (theoretically) equivalent
– A language is "Turing-complete" if it can compute anything 

computable by a Turing machine
– Most modern languages are Turing-complete

● Also, most are designed for a von Neumann architecture
– Data and program in the same memory
– Fetch-decode-execute cycle



  

Why are there so many?

● Evolution over time
– Just like human languages

● Deliberate design efforts
– To address shortcomings of existing languages



  

Which language is best?

● It depends!



  

Our Goals

● Compare programming languages with regard to 
syntax and semantics

● Discuss language implementation issues and the 
tradeoffs involved

● Gain experience in learning new languages
● Gain experience using different language paradigms

– E.g., scripting, functional, and logic-based



  

Course Design

● Mastery model
– Course content divided into ~20 modules
– Ungraded activities to achieve mastery
– Graded assessments to prove mastery

● Schedule
– 1-2 modules per week
– Lectures and labs Tuesday and Thursday
– Assessment(s) due on Friday
– Final grade is mean of all individual module grades
– Final exam: a flash talk on a language not covered in this course



  

Module Types

● Basic
– Learn via readings, lectures, and labs
– Assessed via Canvas quiz on Friday

● Option for second try the following Friday

● Reading
– Learn via reading
– Assessed via Canvas quiz due Friday

● Option for second try due the following Friday

● Programming
– Learn a language by working on labs and short projects
– Assessed via automated testing (submit on Canvas)
– No retakes!



  

Learning Activities

● Module guides: lists of objectives
● Readings: Sebesta's "Concepts of Programming 

Languages" (CPL)
– Reading is important
– Some material will not be covered during class

● In-class lectures: focused on harder material
● Labs: in class, graded “lightly”
● Web/Canvas resources



  

Tentative Schedule



  

Spring 2021 notes

● Fully online all semester
● Synchronous classes on Zoom

– Make sure you have the latest version installed
– Attendance is expected but not required
– Please turn on your camera or add a profile photo

● Contact outside of class
– Office hours on Zoom 11am-noon every day (link on Canvas)

● May need to cancel occasionally (will send Canvas announcement)

– Slack whenever I’m available
– Appointment outside regular office hours (link on Canvas)
– Via email when a permanent record is desired



  

Questions?



  

Let's talk about PL

● Why should we want to study languages?

This material is also covered in Chapter 1 of your textbook.



  

Why PL?

● Increased capacity to express ideas
– E.g., objects or associative maps in languages that don't 

explicitly provide them

● Improved background for choosing appropriate languages
– We tend to choose things that are familiar, so it is advantageous 

to be familiar with many languages

● Increased ability to learn new languages
– Practice helps, as does learning PL fundamentals
– Also improves mastery of already-known languages



  

Why PL?

● Better understanding of implementation
– Move beyond superficial differences between 

language syntax (whitespace, brackets, etc.)
– Helps with program debugging

● Overall advancement of computing
– Broader knowledge enables informed trends
– Hindsight: what if ALGOL 60 had become more 

popular than Fortran in the 1960s?



  

Why PL?  (the real reasons)

● Knowing more languages looks good on your resume
● Knowing PL theory makes you a more valuable employee
● You get to brag about all the stuff you know
● It's fun!

– (I think so, anyway...)



  

How do we evaluate languages?

● Readability
– How easy is it to understand already-written code?

● Writability
– How easy is it to write clear, efficient code?

● Reliability
– How easy is it to write programs that adhere to 

specifications?

$_=$`.$_.$'.<>;split//;${/[@_[map{$i-($i="@-")%9+$_,9*$_+$i%
9,9*$_%26+$i-$i%27+$i%9-$i%3}0..8]]/o||do$0}for/0/||print..9

This is a Sudoku solver in Perl:

(or is it?)



  

Evaluating Languages

● Simplicity (few basic constructs, minimal overloading)
● Orthogonality (independence of features, feature symmetry)
● Data types (expressive without being redundant)
● Syntax design (consistency, sensible keywords)
● Support for abstraction (subprograms, data structures)
● Expressivity (convenience, "elegance")
● Type checking (strict is safer, but cost vs. benefit is debatable)
● Exception handling (early detection, clean handling)
● Restricted aliasing (make it apparent)
● Standardization (respected organization, appropriate time)



  

Evaluating Languages

● Various costs
– Programmer training
– Code writing and debugging
– Compile time
– Execution time
– Runtime system
– Maintenance
– Porting

● Tradeoffs exist between these criteria and costs
– Language designs represent points on these spectrums



  

Language Categories

● Traditional bins:
– Procedural/imperative (assembly, Fortran, COBOL, ALGOL, C)
– Functional (Lisp, Scheme, Haskell)
– Logic- or rule-based (Prolog, Make)
– Object-oriented (Smalltalk, C++, Java, Ruby)

● Other bins:
– Visual (Visual Basic, Adobe Flash)
– Scripting (Perl, Javascript, Python, Ruby)
– Markup or metadata (HTML, LaTeX)
– Educational (Scratch)
– Special-purpose or domain-specific



  

Contexts

● Context matters!
– Languages do not exist in a vacuum



  

Context: Programming Domains

● Scientific
– Primary concern: efficiency (speed)

● Business
– Primary concern: data processing and formatting

● Artificial intelligence
– Primary concern: symbolic computation

● Systems
– Primary concern: efficiency, low-level access, and portability
– Safety and security are a rapidly-growing concerns

● Web
– Primary concern: presentation and ease of development



  

Context: PL Design Influences

● Hardware/architecture design shifts
– Historic prevalence of imperative/procedural languages that closely 

match the hardware (von Neumann architecture)
– Cheaper hardware → higher-level languages

● Software development methodology shifts
– Shift from procedure-oriented to data-oriented
– Better software engineering practices → desire for “safer” languages
– Agile programming and rapid prototyping languages

● Social, cultural, and political shifts
– Millennial and post-millennial generation cultures (web languages 

and frameworks)



  

Relative Popularity

● What do you suppose was the fastest-growing 
language in 2020?
– (according to the TIOBE index, anyway...)



  

Relative Popularity

Fastest growing language of 2020?  Python!
(C++ was a close second)



  

Historical Popularity



  

First New Language: Ruby

● Ruby is a dynamically-typed, pure object-
oriented, interpreted scripting language

There is a lab posted on the website to help you learn Ruby.

The first PA is also posted.

On Thursday we will have lab time to work on learning Ruby, 
beginning with a guided tour.

puts “Hello world!”    # this is a complete program!



  

Learning New Languages

● Write code!
– Learning about a language ≠ learning the language

● Ideas:
– Do the provided labs!
– Do the programming assignments
– Re-write your CS 149 projects in the new language
– Re-write a hobby project in the new language
– Solve problems on a site like Kattis, HackerRank, etc.



  

Good luck!

● For Thursday:
– Take the intro survey (if you haven’t already)
– Start learning Ruby by starting the lab
– Take the M1 reading quiz if you wish

● Have a great semester!

https://xkcd.com/2309/
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