

CS 430
Spring 2021

Mike Lam, Professor

Programming
Languages

Opening challenge: how many programming languages can you name?

Overview

● Programming language (PL)
– Tool for formal expression of problems and solutions
– Audience: humans and machines

● General topics
– Syntax (what a program looks like)
– Semantics (what a program means)
– Implementation (how a program executes)

Why are PLs needed?

● Humans excel at approximate and contextual understanding
– Imprecise language is often easier and quicker
– Ex: "Meet you at El Charro at 6?"
– vs. "I request your presence at 1480 S. Main St., Harrisonburg, VA,

at 18:30 GMT-5 on 2021-01-20"

● Machines are not humans (and thus less forgiving)
– They are (currently) slower and less accurate at language

recognition and interpretation

– Thus, programming in a natural language is a Bad Idea
TM

Why so many PLs?

● Surprising result: all languages are (theoretically) equivalent
– A language is "Turing-complete" if it can compute anything

computable by a Turing machine
– Most modern languages are Turing-complete

● Also, most are designed for a von Neumann architecture
– Data and program in the same memory
– Fetch-decode-execute cycle

Why are there so many?

● Evolution over time
– Just like human languages

● Deliberate design efforts
– To address shortcomings of existing languages

Which language is best?

● It depends!

Our Goals

● Compare programming languages with regard to
syntax and semantics

● Discuss language implementation issues and the
tradeoffs involved

● Gain experience in learning new languages
● Gain experience using different language paradigms

– E.g., scripting, functional, and logic-based

Course Design

● Mastery model
– Course content divided into ~20 modules
– Ungraded activities to achieve mastery
– Graded assessments to prove mastery

● Schedule
– 1-2 modules per week
– Lectures and labs Tuesday and Thursday
– Assessment(s) due on Friday
– Final grade is mean of all individual module grades
– Final exam: a flash talk on a language not covered in this course

Module Types

● Basic
– Learn via readings, lectures, and labs
– Assessed via Canvas quiz on Friday

● Option for second try the following Friday

● Reading
– Learn via reading
– Assessed via Canvas quiz due Friday

● Option for second try due the following Friday

● Programming
– Learn a language by working on labs and short projects
– Assessed via automated testing (submit on Canvas)
– No retakes!

Learning Activities

● Module guides: lists of objectives
● Readings: Sebesta's "Concepts of Programming

Languages" (CPL)
– Reading is important
– Some material will not be covered during class

● In-class lectures: focused on harder material
● Labs: in class, graded “lightly”
● Web/Canvas resources

Tentative Schedule

Spring 2021 notes

● Fully online all semester
● Synchronous classes on Zoom

– Make sure you have the latest version installed
– Attendance is expected but not required
– Please turn on your camera or add a profile photo

● Contact outside of class
– Office hours on Zoom 11am-noon every day (link on Canvas)

● May need to cancel occasionally (will send Canvas announcement)

– Slack whenever I’m available
– Appointment outside regular office hours (link on Canvas)
– Via email when a permanent record is desired

Questions?

Let's talk about PL

● Why should we want to study languages?

This material is also covered in Chapter 1 of your textbook.

Why PL?

● Increased capacity to express ideas
– E.g., objects or associative maps in languages that don't

explicitly provide them

● Improved background for choosing appropriate languages
– We tend to choose things that are familiar, so it is advantageous

to be familiar with many languages

● Increased ability to learn new languages
– Practice helps, as does learning PL fundamentals
– Also improves mastery of already-known languages

Why PL?

● Better understanding of implementation
– Move beyond superficial differences between

language syntax (whitespace, brackets, etc.)
– Helps with program debugging

● Overall advancement of computing
– Broader knowledge enables informed trends
– Hindsight: what if ALGOL 60 had become more

popular than Fortran in the 1960s?

Why PL? (the real reasons)

● Knowing more languages looks good on your resume
● Knowing PL theory makes you a more valuable employee
● You get to brag about all the stuff you know
● It's fun!

– (I think so, anyway...)

How do we evaluate languages?

● Readability
– How easy is it to understand already-written code?

● Writability
– How easy is it to write clear, efficient code?

● Reliability
– How easy is it to write programs that adhere to

specifications?

$_=$`.$_.$'.<>;split//;${/[@_[map{$i-($i="@-")%9+$_,9*$_+$i%
9,9*$_%26+$i-$i%27+$i%9-$i%3}0..8]]/o||do$0}for/0/||print..9

This is a Sudoku solver in Perl:

(or is it?)

Evaluating Languages

● Simplicity (few basic constructs, minimal overloading)
● Orthogonality (independence of features, feature symmetry)
● Data types (expressive without being redundant)
● Syntax design (consistency, sensible keywords)
● Support for abstraction (subprograms, data structures)
● Expressivity (convenience, "elegance")
● Type checking (strict is safer, but cost vs. benefit is debatable)
● Exception handling (early detection, clean handling)
● Restricted aliasing (make it apparent)
● Standardization (respected organization, appropriate time)

Evaluating Languages

● Various costs
– Programmer training
– Code writing and debugging
– Compile time
– Execution time
– Runtime system
– Maintenance
– Porting

● Tradeoffs exist between these criteria and costs
– Language designs represent points on these spectrums

Language Categories

● Traditional bins:
– Procedural/imperative (assembly, Fortran, COBOL, ALGOL, C)
– Functional (Lisp, Scheme, Haskell)
– Logic- or rule-based (Prolog, Make)
– Object-oriented (Smalltalk, C++, Java, Ruby)

● Other bins:
– Visual (Visual Basic, Adobe Flash)
– Scripting (Perl, Javascript, Python, Ruby)
– Markup or metadata (HTML, LaTeX)
– Educational (Scratch)
– Special-purpose or domain-specific

Contexts

● Context matters!
– Languages do not exist in a vacuum

Context: Programming Domains

● Scientific
– Primary concern: efficiency (speed)

● Business
– Primary concern: data processing and formatting

● Artificial intelligence
– Primary concern: symbolic computation

● Systems
– Primary concern: efficiency, low-level access, and portability
– Safety and security are a rapidly-growing concerns

● Web
– Primary concern: presentation and ease of development

Context: PL Design Influences

● Hardware/architecture design shifts
– Historic prevalence of imperative/procedural languages that closely

match the hardware (von Neumann architecture)
– Cheaper hardware → higher-level languages

● Software development methodology shifts
– Shift from procedure-oriented to data-oriented
– Better software engineering practices → desire for “safer” languages
– Agile programming and rapid prototyping languages

● Social, cultural, and political shifts
– Millennial and post-millennial generation cultures (web languages

and frameworks)

Relative Popularity

● What do you suppose was the fastest-growing
language in 2020?
– (according to the TIOBE index, anyway...)

Relative Popularity

Fastest growing language of 2020? Python!
(C++ was a close second)

Historical Popularity

First New Language: Ruby

● Ruby is a dynamically-typed, pure object-
oriented, interpreted scripting language

There is a lab posted on the website to help you learn Ruby.

The first PA is also posted.

On Thursday we will have lab time to work on learning Ruby,
beginning with a guided tour.

puts “Hello world!” # this is a complete program!

Learning New Languages

● Write code!
– Learning about a language ≠ learning the language

● Ideas:
– Do the provided labs!
– Do the programming assignments
– Re-write your CS 149 projects in the new language
– Re-write a hobby project in the new language
– Solve problems on a site like Kattis, HackerRank, etc.

Good luck!

● For Thursday:
– Take the intro survey (if you haven’t already)
– Start learning Ruby by starting the lab
– Take the M1 reading quiz if you wish

● Have a great semester!

https://xkcd.com/2309/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

