

CS 430
Spring 2021

Mike Lam, Professor

Concurrency and Error Handling

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html

Concurrency (CS 261 review)

● Logical flow: sequence of executed instructions
● Concurrency: overlapping logical flows
● Multitasking: processes take turns
● Parallelism: concurrent flows on separate CPUs/cores

Time

Logical
flow

Concurrent
flows

Multitasking
concurrent

flows

Parallel
concurrent

flows

CPU Core1 Core2

Concurrency

● Instruction-level concurrency
– Mostly an architecture and compilers issue (CS 261/456/432)

● Statement-level concurrency
– Often enabled by language or library features (CS 361/470)

● Unit (subprogram)-level concurrency
– Sometimes enabled by language features
– Often a distributed/parallel systems issue (CS 361/470)

● Program-level concurrency
– Mostly an OS or batch scheduler issue (CS 450/470)

Concurrency

● Motivations?
– It’s faster!
– Take advantage of multicore/multiprocessor machines
– Take advantage of distributed machines
– Faster execution even on single-core machines
– Enables new approaches to solving problems

Concepts

● Physical vs. logical concurrency
– Is the concurrency actually happening on the

hardware level, or are executions being interleaved?
– Users and language designers don't care
– Language implementers and OS designers do care

Concepts

● Single threaded vs. multi threaded
– Thread: sequence of control flow points
– Coroutines are single threaded (quasi-concurrent)
– Multi-threaded programs may still be executed on a single

CPU via interleaving
● Synchronous vs. asynchronous

– Synchronous tasks must take turns and wait for each other
– Asynchronous tasks may execute simultaneously

Concepts

● Task/process/thread: program unit that supports
concurrent execution
– Typically, a process may contain multiple threads
– All threads in a process share a single address space
– Textbook: heavyweight = process, lightweight = thread
– Some OSes support lightweight processes
– See CS 361, 450, or 470 for more details

Scheduling

● Scheduler: a system program that manages the sharing of
processors between tasks
– Priority-based scheduling
– Round-robin scheduling
– Real-time scheduling

● Task states
– New: created but not yet begun
– Ready: not executing, but may be started

● Often stored in a ready queue

– Running: currently executing
– Blocked: running, but waiting on an event
– Dead: no longer active

Concepts

● Liveness: a program executes to completion
● Deadlock: loss of liveness due to mutual waiting

– E.g., dining philosophers!
● Race condition: concurrency outcome depends on

interleaving order
– Example: Two concurrent executions of bump()

def bump(x)
 tmp = $counter (1)
 tmp += x (2)
 $counter = tmp (3)
end

OK:
1
2
3
4
5
6

BAD:
1
4
2
5
3
6

def bump(x)
 tmp = $counter (4)
 tmp += x (5)
 $counter = tmp (6)
end

Concepts

● Synchronization: mechanism that controls task ordering
– Cooperation: ordering based on inter-task dependencies

● E.g., Task A is waiting on task B to finish an activity
● Common example: producer/consumer problem

– Competition: ordering based on resource contention
● E.g., Task A and Task B both need access to a resource
● Common example: dining philosopher problem

Queue

Producers Consumers

Synchronization

● Semaphore: guarding mechanism (1965)
– Integer (n = “empty slots”) and a task queue
– Produce (P / “wait”)

● decrement n
● if (n < 0): enqueue current process and block

– Consume (V / “signal”)
● increment n
● if (n >= 0): dequeue and unblock a process

– Binary semaphore: single “slot” (mutex)
– Issue: burden of correct use falls on the programmer

Synchronization

● Monitor: encapsulation mechanism (1974)
– Abstract data types for concurrency
– Handles locking and corresponding thread queue
– Shifts responsibility to language implementer and runtime

system designer
– Generally considered safer

● Message passing: communication model (1978)
– Fairness in communication
– Synchronous vs. asynchronous
– Can be difficult to program and expensive
– Necessary in distributed computing

High-Performance Fortran

● Motivation: higher abstractions for parallelism
– Predefined data distributions and parallel loops
– Optional directives for parallelism (similar to OpenMP)

● Development based on Fortran 90
– Proposed 1991 w/ intense design efforts in early 1990s
– Wide variety of influences on the design committee
– Standardized in 1993 and presented at Supercomputing '93

For the full story, see "The Rise and Fall of High Performance Fortran: An Historical Object Lesson"
http://dl.acm.org/citation.cfm?id=1238851

High-Performance Fortran

● Issues
– Immature compilers and no reference implementation
– Poor support for non-standard data distributions
– Poor code performance; difficult to optimize and tune
– Slow uptake among the HPC community

● Legacy
– Effort in 1995-1996 to fix problems with HPF 2.0 standard
– Eventually dropped in popularity and was largely abandoned
– Some ideas still had a profound influence on later efforts

Language Support

● C/C++/Fortran
– Pthreads, OpenMP, MPI

● Java
– Threads, synchronized keyword and wait/notify

● Haskell
– Control.Parallel and Control.Concurrent

● High-Performance Fortran (HPF)
– DISTRIBUTE and FORALL

● Go
– Goroutines, channels, and mutexes

● Chapel
– coforall, cobegin, and domains

Exceptional control flow

● Concurrency is often implemented using
exceptional control flow
– Variants: interrupt, trap, fault, abort
– (remember this from CS 261?)

● Related question: how to handle errors in
programming languages?

Approaches

● Do nothing
– Worst possible approach!
– No indication that anything has gone wrong
– "Silent propagation" of errors

● Terminate the program
– I.e. delegate error handling to the operating system
– Also rather drastic, but at least it provides some kind of

notification (OS-dependent)
– No opportunity to correct problems
– Most infamous: the segfault

Approaches

● Pass around error handlers
– Extra function parameters (and runtime overhead)
– Confusing and difficult to reason about
– What if you pass the wrong error handler?

● Handle all errors at their source
– Error handling often depends on current context
– Lots of (possibly duplicate) error handling code

int div(int a, int b, void (err_handler)(char*)) {
 if (b == 0) err_handler(“Division by zero!”);
 return a / b;
}

Approaches

● Return an error value (in same variable)
– Error value must come from variable domain
– Blurs the line between program logic and program data
– Burden shifts to callers, who must test for error value

● Return an error value (in separate variable)
– Cleaner (separation between logic and data)
– Burden is still on the caller to remember to test for errors

int div(int a, int b) {
 if (b == 0) return 0;
 return a / b;
}

int div(int a, int b, bool *err) {
 if (b == 0) {
 *err = true;
 return 0;
 }
 return a / b;
}

Aside: Monad design pattern

● Error handling in functional languages requires tracking of state
– E.g., whether or not an error has occurred

● Monad pattern: functions return an Either value to propagate errors
– Success <val> or Failure <err> (Right and Left in Haskell)

– This is a variant of the “return an error value in separate variable” idea
– Generic function composition via a bind operation (>>= in Haskell)

(+ value)

(+ error)

instance Monad (Either e) where
 Left err >>= _ = Left err
 Right val >>= f = f val

https://fsharpforfunandprofit.com/posts/recipe-part2/

Exception Handling

● Exception: unusual event (possibly erroneous) that
requires special handling

● Exception handler: code unit that processes the special
handling for an exception

● An exception is raised when the unusual event is detected,
and is caught when the exception handler is triggered

● This framework is called formal exception handling
– First introduced in PL/I (1976)

try {
 do_something_dangerous();
} catch (DangerousError e) {
 gracefully_handle(e);
}

do_something_dangerous() {
 …
 if (bad_thing_happened) {
 throw new DangerousError();
 }
 …
}

Benefits of Formal Exceptions

● Less program complexity and clutter; increased readability
● Standardized handling mechanisms
● Increased programmer awareness
● Decouples exception handling from program logic
● Handler re-use via exception propagation
● More secure due to compiler analysis

Design Issues

● How and where are exception handlers specified?
● What is the scope of exception handlers?

– What information (if any) is available about the error?
● Are there any built-in exceptions? If so, what are they?
● Can programmers define new exceptions?
● How is an exception bound to a handler at runtime?
● Where does execution resume (if at all) after an

exception handler finishes?

Binding and Continuation

● When an exception is thrown (binding)
– Look for matching handler in local scope

● Could be an "else" handler

– If no handler is found, continue through ancestors
● Usually via dynamic scoping

– If no handler is found, abort the program
● When a handler finishes (continuation)

– If the handler threw another error, handle that
● First execute any "finally" clause if present

– Continue execution after the handler
● First execute any "finally" clause if present

– Changes made by the error handler are visible

Language Debate

● Are formal exceptions any different from GOTO
statements? If not, are they just as dangerous?
If so, how are they different?

void get_N()
{
 n = compute_value();
 if (n > LIMIT) {
 goto exceed_limit_error;
 }
 return n;

exceed_limit_error:
 printf(“Value exceeds limit!\n”);
 exit(EXIT_FAILURE);
}

void get_N()
{
 try {
 n = compute_value();
 if (n > LIMIT) {
 throw new ExceedLimitException;
 }
 } catch (ExceedLimitException e) {
 System.out.println(“Value exceeds limit!”);
 System.exit(-1);
 }
 return n;
}

C version (w/ GOTO) Java version (w/ exceptions)

Language Debate

● Are formal exceptions any different from GOTO
statements? If not, are they just as dangerous?
If so, how are they different?
– Basic difference: formal exceptions are more
structured

● More rules and restrictions governing their uses
● Language facilities provide (mostly) safe usage

– Care should be taken to limit their complexity
● Main issue: proximity of detection and handling
● Avoid “spaghetti code” (hard-to-trace control flows)

Event Handling

● Similarity between error handling and event handling
– Asynchronous events that must be handled by the program

● Primary difference: events are "normal", errors are "unusual"
– Events come from users; errors come from elsewhere in the code

or originate in hardware
● Another difference: events are often handled in a separate

thread
– Keeps the program feeling "responsive"

Event Loops

● Event loop: code that explicitly receives and handles events
● Traditional form:

 while(GetMessage(&Msg) > 0)

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

● Often run in its own thread
● Requires explicit dispatch routine

– Can become extremely complex and unwieldy

Aside: Observer design pattern

● Cleaner solution: Observer pattern (OOP)
– Single event thread, implemented in language runtime

● Dispatches events to relevant objects

– Objects maintain a list of "observers"/"listeners"
– Upon receiving an event, the object passes it to a designated

routine in every registered observer
– Optional improvement: anonymous functions or event

handling classes
● Very similar to lambda functions or closures!

inputStream.addIOErrorHandler(new IOErrorHandler() {
 void handleIOError(IOError err) {
 System.err.print(“Error: “ + err.getMessage());
 System.exit(-1);
 }
});

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

