

CS 430
Spring 2022

Mike Lam, Professor

Syntax

Consider the following code

if (a < 5) {
 printf(“%d\n”, a);
}

if a < 5:
 print a

if [$a -lt 5]; then
 echo $a
fi

puts a if a < 5

Language A

Language B

Language C

Language D

Syntax

● Textbook: syntax is "the form of [a language's]
expressions, statements, and program units."

● In other words: the appearance of code
● Semantics deal with the meaning of code

– Syntax and semantics are (ideally) closely related
● Goals of syntax analysis:

– Checking for program validity or correctness
– Facilitate translation or execution of a program

Case study on importance of making syntax choices carefully:
https://beebo.org/haycorn/2015-04-20_tabs-and-makefiles.html

https://beebo.org/haycorn/2015-04-20_tabs-and-makefiles.html

Syntax Analysis

● Context-free grammar
– Description of a language's syntax

● Usually written in Backus-Naur Form

– Encodes hierarchy and structure of code
● Usually represented using a tree

– Provide ways to control ambiguity, associativity, and
precedence in a language

– Four components:
● Terminals
● Non-terminals
● Productions (rules)
● Start symbol

Grammars

● Non-terminals and terminals
– Terminals are small chunks of the program code (e.g., “+” or “foo”)

– Non-terminals represent units of program structure
– One special non-terminal: the start symbol

● Production rules
– Left hand side: single non-terminal
– Right hand side: sequence of terminals and/or non-terminals
– LHS is replaced by the RHS during derivation
– Meta-syntax: “→” means "is composed of" and “|” means “or”

<assign> ::= <var> = <expr>
<var> ::= a | b | c
<expr> ::= <expr> + <expr>
 | <var>

A → V = E
V → a | b | c
E → E + E
 | V

More verbose style: More streamlined style:

We’ll use
this one

Derivation

● Derivation: a series of grammar-permitted transformations
leading to a sentence (sequence of terminals)
– Each transformation applies exactly one rule
– Each intermediate string of symbols is a sentential form
– Leftmost vs. rightmost derivations

● Which non-terminal do you expand first?

– Parse tree represents a derivation in tree form
● Built from the start symbol (root) down during derivation
● Final parse tree is called complete parse tree
● The sentence is the sequence of all leaf nodes (terminals)
● Interior nodes represent non-terminals
● Represents a program, executed from the bottom up

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A → V = E
V → a | b | c
E → E + E
 | V

A
V = E
a = E
a = E + E
a = V + E
a = b + E
a = b + V
a = b + c

A

V E

EEa

V V

+

=

b c

start
symbol
(root)

sentential
forms

sentence

Ambiguous Grammars

● An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence
– The semantics may be similar or identical, but there is a difference

syntactically
– It is important to be precise!

● Can usually be eliminated by rewriting the grammar
– Usually by making one or more rules more restrictive

● Example: derive “d = a + b + c” and show the parse tree

A → V = E
V → a | b | c | d
E → E + E
 | V

Operator Associativity

● The previous ambiguity resulted from an unclear associativity
● Does x+y+z = (x+y)+z or x+(y+z)?

– Former is left-associative
– Latter is right-associative

● Can be enforced explicitly in a grammar
– The problem is the E → E + E production

● Need to remove one possible interpretation

– Left-associative: change to (E → E + V)
– Right-associative: change to (E → V + E)
– Sometimes just noted with annotations

Operator Precedence

● Precedence determines the relative priority of operators in a single
production (more ambiguity)

● Does x+y*z = (x+y)*z or x+(y*z)?
– Former: "+" has higher precedence
– Latter: "*" has higher precedence

● Can be enforced explicitly in a grammar
– Separate into two non-terminals (e.g., E and T)

● One non-terminal per level of precedence
● Non-terminals closer to the root have lower precedence
● E.g., for “normal” precedence: E → E + T | T T → T * V | V

– Sometimes just noted with annotations
– Same approach for unary and binary operators

● For binary operators: left or right associativity?
● For unary operators: prefix or postfix? (! D vs. D !)

● For unary operators: is repetition allowed? (C ! vs. D !)

A → A + B
 | B
B → B * C
 | C
C → D !
 | D

Precedence
+ (lowest)
* (middle)
! (highest)

Extended BNF

● There are many extensions to BNF
– Most add new meta-syntax operators

● Examples:
– Optional: []
– Closure: {} (sometimes w/ superscripts)
– Multiple-choice: | (already introduced)

● All of these can be expressed using regular BNF
– (exercise left to the reader)

● So these are really just conveniences

E → E + E
 | V

E → E + E
E → V≡

Grammar Examples

A → A x
 | x

A → x A
 | x

A → A + x
 | x

A → x + A
 | x

A → B | C
B → x
C → x

A → ifthen A else A
 | ifthen A
 | stmt

Left Recursive Right Recursive

Left Associative Right Associative

Ambiguous
(Ad-hoc)

Ambiguous
("Dangling Else" Problem)

A → A + A
 | A * A
 | x

A → A + B
 | B
B → C * B
 | C
C → x !
 | x

Associativity/Precedence
+ (lowest, binary, left-associative)
* (middle, binary, right-associative)

! (highest, unary, postfix,
non-repeatable)

Ambiguous
(Associativity/Precedence)

Summary

● Context-free grammars
– Expressed using Backus-Naur Form
– Describes a programming language's syntax
– Controls ambiguity, associativity, and precedence

● Lots of very nice language theory
– We won't dig too deeply in this course
– You have seen (or will see) a bit in CS 327
– Take CS 432 if you're interested in digging deeper

Real-world Examples

● ANTLR grammars:
– C
– Java 9
– Ruby
– Prolog

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4/blob/master/c/C.g4
https://github.com/antlr/grammars-v4/blob/master/java/java9/Java9Parser.g4
https://github.com/antlr/grammars-v4/blob/master/ruby/Corundum.g4
https://github.com/antlr/grammars-v4/blob/master/prolog/prolog.g4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

