selectionStatement
"if' '(° expression ')' statement ('else’' statement)?

| 'switch' '(' expression ')' statement

iterationStatement
While '(' expression ')' statement

| Do statement While '(' expression ')' ';
I

For "(' forCondition ')' statement

Syntax

I Consider the following code

Language A

Language B

Language C

Language D

if (a < 5) {
printf(“%d\n”, a);
h

if a < 5:
print a

if [$a -1t 5]; then
echo %a
fi

puts a 1f a < 5

I Syntax

* Textbook: syntax Is "the form of [a language's]
expressions, statements, and program units."

* |n other words: the appearance of code
* Semantics deal with the meaning of code

- Syntax and semantics are (ideally) closely related
* Goals of syntax analysis:

— Checking for program validity or correctness
- Facilitate translation or execution of a program

Case study on importance of making syntax choices carefully:
https://beebo.org/haycorn/2015-04-20 tabs-and-makefiles.html

https://beebo.org/haycorn/2015-04-20_tabs-and-makefiles.html

I Syntax Analysis

« Context-free grammar

— Description of a language's syntax
e Usually written in Backus-Naur Form

- Encodes hierarchy and structure of code
* Usually represented using a tree

- Provide ways to control ambiguity, associativity, and
precedence in a language

- Four components:

Terminals
Non-terminals
Productions (rules)
Start symbol

I Grammars

* Non-terminals and terminals
- Terminals are small chunks of the program code (e.g., “+” or “foo”)
— Non-terminals represent units of program structure
— One special non-terminal: the start symbol
* Production rules
- Left hand side: single non-terminal
- Right hand side: sequence of terminals and/or non-terminals
- LHS is replaced by the RHS during derivation
- Meta-syntax: “- " means "Is composed of" and “|” means “or”

More verbose style: More streamlined style:

<assign> ::= <var> = <expr> A- V =E

<var> = a| b | c Vo al|lb]ec Werll uee
- — +

<expr> = <expr> + <expr> E E E thiz one
| <var> | V

I Derivation

* Derivation: a series of grammar-permitted transformations
leading to a sentence (sequence of terminals)

- Each transformation applies exactly one rule
- Each intermediate string of symbols is a sentential form

- Leftmost vs. rightmost derivations
* Which non-terminal do you expand first?
— Parse tree represents a derivation in tree form

 Built from the start symbol (root) down during derivation
Final parse tree is called complete parse tree

The sentence is the sequence of all leaf nodes (terminals)
Interior nodes represent non-terminals

Represents a program, executed from the bottom up

I Example

* Show the leftmost derivation and parse tree of the
sentence "a = b + c¢" using this grammar:

A- V =E
Vo al|b]|c A
E—) E+E start /’\
symbol
| V (root) V — E
/ a E + E
A
V = E
_ a=E Vv Vv
sentential a=FE+ E
forms
a=V+E
a=Db+ E b o
. a=»Db+V
sentence —p a = b + C

I Ambiguous Grammars

* An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence

- The semantics may be similar or identical, but there is a difference
syntactically

- It is important to be precise!
* Can usually be eliminated by rewriting the grammar

— Usually by making one or more rules more restrictive
 Example: derive “d = a + b + ¢” and show the parse tree

| ¢ | d

m o m

m< >
— 1 1 |
+ — |l

< Mmoo <

I Operator Associativity

* The previous ambiguity resulted from an unclear associativity
* Does x+y+z = (x+y)+z or x+(y+z)?

- Former is left-associative
- Latter is right-associative

* Can be enforced explicitly in a grammar

— The problem is the E - E + E production
* Need to remove one possible interpretation
- Left-associative: change to (E - E + V)

- Right-associative: changeto (E - V + E)
- Sometimes just noted with annotations

I Operator Precedence

* Precedence determines the relative priority of operators in a single
production (more ambiguity)

* Does x+y*z = (x+y)*z or x+(y*z)?
- Former: "+" has higher precedence
- Latter: "*" has higher precedence

« Can be enforced explicitly in a grammar A - A+
— Separate into two non-terminals (e.g., E and T) | B
« One non-terminal per level of precedence B - B *
* Non-terminals closer to the root have lower precedence | C
* E.g., for “normal” precedence: E - E+T|T T-T*V|V C l
— Sometimes just noted with annotations
— Same approach for unary and binary operators |
* For binary operators: left or right associativity? Precedence
« For unary operators: prefix or postfix? (! Dvs. D) T (onvest)
* (middle)

 For unary operators: is repetition allowed? (C ! vs. D !) 1 (highest)

o

O

I Extended BNF

There are many extensions to BNF
- Most add new meta-syntax operators
Examples:

— Optional: []
— Closure: {} (sometimes w/ superscripts)
— Multiple-choice: | (already introduced)

All of these can be expressed using regular BNF

- (exercise left to the reader)
So these are really just conveniences

E -

E + E
| V

I
M m
[
< m

Grammar Examples

A - A+ B
A - A X A - X A | B
| X | X B C*B
Left Recursive Right Recursive | C
C - x !
A A+ X Ao X + A | X
| X | X Associativity/Precedence

+ (lowest, binary, left-associative)

Left Associative Right Associative * (middle, binary, right-associative)

I (highest, unary, postfix,
non-repeatable)

A - A+ A A-B | C A — ifthen A else A
| A * A B - X | ifthen A
| X C - X | stmt
Ambiguous Ambiguous Ambiguous

(Associativity/Precedence) (Ad-hoc) ("Dangling Else" Problem)

I Summary

* Context-free grammars

— EXpressed using Backus-Naur Form

— Describes a programming language's syntax

— Controls ambiguity, associativity, and precedence
* Lots of very nice language theory

- We won't dig too deeply in this course

- You have seen (or will see) a bitin CS 327
- Take CS 432 if you're interested in digging deeper

* ANTLR grammars:
- C
- Java 9
- Ruby
- Prolog

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4/blob/master/c/C.g4
https://github.com/antlr/grammars-v4/blob/master/java/java9/Java9Parser.g4
https://github.com/antlr/grammars-v4/blob/master/ruby/Corundum.g4
https://github.com/antlr/grammars-v4/blob/master/prolog/prolog.g4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

