

Warm-up question

● Which of these Java programs compile, and what (if any) output do they print?

class Shadowing1 {
 public static int x = 9;
 public static void main (String[] args) {
 int x = 5;
 System.out.println(x);
} }

class Shadowing2 {
 public static void main (String[] args) {
 int x = 5; int y = 8;
 if (x == 5) {
 int y = 6;
 }
 System.out.println(x+y);
} }

class Shadowing3 {
 public static void main(String[] args) {
 if (true != false) {
 x = 6;
 }
 int x = 5;
 System.out.println(x);
} }

CS 430
Spring 2022

Mike Lam, Professor

Variables and Scoping

y = 2x + 5

Course outline

● Syntax (modules 2-3)
● Semantics (modules 5-8, 10-11, and 13-14)

– Variables and scoping
– Types and type checking
– Expressions and control structures
– Parameters and subprograms

● Implementation (modules 16 and 18-19)
– Activation and environments
– Abstraction and OOP
– Concurrency and Error Handling

● History (module 20)

Variables

● What is a variable?

Variables

● Most languages are Turing-complete
– Read/write head that moves left and right in memory

● Most computers use a von Neumann architecture
– Programs read and write to cells in memory
– Need to access individual cells (or groups of cells)
– Actual location is less relevant

Variables

● A variable is an abstraction of memory cells
● Six main attributes/properties:

– Name
– Address
– Value
– Type
– Lifetime
– Scope

Binding

● Binding: attribute/property association
– Bindings begin at binding time

● Language design/implementation time
● Compile time
● Load/link time
● Run time

– Bindings are usually either static or dynamic
● Static bindings begin before the program is executed and

do not change during execution
● Dynamic bindings may begin or change during execution

Name

● Name: string of characters that serves as an identifier
– Case sensitivity
– Special characters with meanings (e.g., $ and @ in Ruby)
– Standards or conventions (e.g., camelCase vs. under_scores)

– Semantic significance (e.g., type in FORTRAN and Prolog)
● Keyword vs. reserved word

– Keyword: string of characters with special meaning
– Reserved word: string of characters that cannot be used as a

variable name (may or may not be a keyword)
● Name bindings are usually static

– Often created by a declaration
– Not all variables have a name!

Address

● Address: location of a variable in memory
– Sometimes called l-value

● Address bindings may be static or dynamic
– Creation of this binding is called allocation

● Aliases: multiple variables with identical addresses

x = a + 5

(uses x’s l-value)

Value

● Value: contents of the memory associated with a variable
– Sometimes called r-value

● Value bindings are usually dynamic
– Otherwise, they wouldn't be "variable"
– First binding is called initialization
– Important exception: named constants
– Purely-functional languages (e.g., Haskell) are also an exception

x = a + 5

(uses a’s r-value)

Type

● Type: range of values a variable can store
– And the operations that can be applied to it
– Common primitive types: integer, real number, boolean, character
– Common composite types: array/string, pointer, record, union, object

● Implicit vs. explicit binding
– int x = 5 vs. x = 5

● Static vs. dynamic typing
– The latter allows a variable’s type to change at runtime
– Requires the system to track a type for each variable in memory

● Type inference
– A language can be both implicitly and statically typed!

Type binding examples

● Java (explicit static)
int x = 5;

x = “hello”; // compiler error

● JavaScript (implicit dynamic)
var x = 5; // x is an int

x = “hello”; // now it’s a String

● Java 10 (implicit static)
var x = 5; // x is inferred to be an int

x = “hello”; // compiler error

Lifetime

● Lifetime: duration of address/storage binding
– Period of time that the variable is available

● Common lifetimes are based on location:
– Static: entire program execution
– Stack-dynamic: single function execution
– Heap: arbitrary

● Binding is created at allocation
● Binding is destroyed at deallocation

Lifetime

● Explicit heap-dynamic: nameless memory accessed w/
pointers or references (e.g., C/C++ or Java)
– Allocated explicitly (e.g., malloc in C or new in C++ or Java)

– Can be deallocated explicitly (e.g., free in C and delete in C++)
● Some languages (e.g., Rust) have delegation mechanisms

– Can be deallocated implicitly (e.g., garbage collection in Java)
● Implicit heap-dynamic: allocated only when assigned a

value (e.g., arrays in Javascript)
– Reallocated when assigned a different value
– Deallocated implicitly

We will consider instance variables to be explicit or implicit according to
the object they belong to; this is somewhat ambiguous in our textbook

Scope

● Scope: program range where a variable is visible
– A variable is visible if it can be referenced without qualification

● E.g., just “x” instead of “Foo::Bar::x”
– Many possible ranges (e.g., block, function, global, package)
– OOP brings even more possibilities (public, private, protected)

● Local vs. non-local variables
– A variable is local in the scope where it is declared
– Local variables shadow (hide) non-local variables w/ same name
– Sometimes shadowed variables are still accessible w/ qualification

● Often related to lifetime
– But not necessarily! (e.g., static local in C)

Scope

● Static (lexical) vs. dynamic scoping
– Code structure vs. call structure
– Both involve finding a variable (name resolution) by

searching through a hierarchy of scopes
● Static scoping: compiler can do the search
● Dynamic scoping: search the stack at runtime

– Dynamic scoping is rare now and usually optional
● Example: “my” (static) vs. “local” (dynamic) in Perl

Referencing Environment

● Referencing environment: all variables visible at some
statement without qualification
– Local scope plus ancestor scopes
– Related concept from compilers: nested symbol tables
– Which variables are visible at the blue and green statements?

class Shadowing4 {
 public static void main(String[] args) {
 System.out.println(args[0]);
 if (true != false) {
 int x = 5;
 System.out.println(x);
 }
 }
}

Environment at blue: { main.args:string }
Environment at green: { main.args:string, main.x:int }

Static/dynamic scoping example

● For both static and dynamic scoping:
– What are the referencing environments at location A, B, and C?
– What is the output?

program p {
 int x = 5
 int y = 2
 // LOCATION A
 func g() {
 int x = 12
 int z = 8
 // LOCATION B
 f()
 }
 func f() {
 // LOCATION C
 println(x)
 }
 g()
}

Static scoping:
A: { p.x:int, p.y:int }
B: { p.y:int, g.x:int, g.z:int }
C: { p.x:int, p.y:int }
Output: “5”

Dynamic scoping:
A: { p.x:int, p.y:int }
B: { p.y:int, g.x:int, g.z:int }
C: { p.y:int, g.x:int, g.z:int }
Output: “12”

Scoping nuances

● Some languages allow mixing of declarations and code (e.g., C99)
– Scope is usually from declaration to end of program unit

● Some languages require declaration before reference
– Declaration order can influence scoping

● Block-structured languages often restrict scope of declarations in a block
– Sometimes allow duplicate names within a larger enclosing scope

● Many languages do not require explicit declarations (e.g., Ruby)
– Scoping often defaults to function-level (why not block?)

● Scoping is usually enforced by compiler/interpreter, but not always
– In Python, “private” class fields (starting w/ underscores) aren’t private!

Scoping nuances

● “Global” can mean different things
– In Ruby, global variables are truly global (accessible

from entire program)
– In C, “global” variables are actually only accessible

from code in the same module (extern required to
access it from a different file)

– In Python, global variables must be marked in
functions that wish to use them, and must be tagged
with module name outside the module

Global scoping example

● What does this Python program print?
x = 5

def bar():
 print(x)

def baz():
 x = 7
 print(x)

def bam():
 global x
 x = 7

bar()
baz()
print(x)
bam()
print(x)

x = 5

def hipster():
 print(x)
 x = 4
 print(x)

hipster()

Block scoping examples

● Java:

/* OK */
int foo() {
 int x;
 if (someTest()) { x = 5; }
 else { x = 7; }
 return x;
}

/* compiler error! */
int foo() {
 if (someTest()) { int x = 5; }
 else { int x = 7; }
 return x;
}

● Ruby:

def foo()
 if someTest()
 x = 5
 else
 x = 7
 end
 return x
end

Conclusion

● Variables are complicated!
– Perhaps more so than you realized before
– Many decisions are made at language design time
– These decisions impact programmers a LOT
– In general, consistency and simplicity are key

● Principle of Least Surprise

Case studies

● Questions
– What is the name, address, value, type, lifetime, and scope?
– Are the bindings static or dynamic?

● Cases
– Java “private” class instance variable

● What would be different in C++?

– Java "public static final" class variable
– C local loop index variable

● i.e., “for (int i = 0; i < N; i++)”

Reminder: common lifetimes include
● Static
● Stack dynamic
● Explicit heap dynamic
● Implicit heap dynamic

Case studies
Java "private" class instance variable
 name: static, bound at compile time
 address: dynamic, bound on object instantiation
 value: dynamic, bound on every assignment
 type: static, bound at compile time
 lifetime: explicit heap dynamic: object instantiation to garbage collection
 scope: static, all methods in class

Java “public static final” class variable
 name: static, bound at compile time
 address: static, bound at compile time
 value: static, bound at compile time
 type: static, bound at compile time
 lifetime: static, entire execution
 scope: static, all code that can see the class

C local loop index variable
 name: static, bound at compile time
 address: dynamic, bound at function entry
 value: dynamic, re-bound on every loop iteration
 type: static, bound at compile time
 lifetime: stack dynamic, during function execution
 scope: static, loop body

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

