
  

Warm-up question

● Which of these Java programs compile, and what (if any) output do they print?

class Shadowing1 {
    public static int x = 9;
    public static void main (String[] args) {
        int x = 5;
        System.out.println(x);
}   }

class Shadowing2 {
    public static void main (String[] args) {
        int x = 5; int y = 8;
        if (x == 5) {
            int y = 6;
        }
        System.out.println(x+y);
}   }

class Shadowing3 {
    public static void main(String[] args) {
        if (true != false) {
            x = 6;
        }
        int x = 5;
        System.out.println(x);
}   }
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Course outline

● Syntax (modules 2-3)
● Semantics (modules 5-8, 10-11, and 13-14)

– Variables and scoping
– Types and type checking
– Expressions and control structures
– Parameters and subprograms

● Implementation (modules 16 and 18-19)
– Activation and environments
– Abstraction and OOP
– Concurrency and Error Handling

● History (module 20)



  

Variables

● What is a variable?



  

Variables

● Most languages are Turing-complete
– Read/write head that moves left and right in memory

● Most computers use a von Neumann architecture
– Programs read and write to cells in memory
– Need to access individual cells (or groups of cells)
– Actual location is less relevant



  

Variables

● A variable is an abstraction of memory cells
● Six main attributes/properties:

– Name
– Address
– Value
– Type
– Lifetime
– Scope



  

Binding

● Binding: attribute/property association
– Bindings begin at binding time

● Language design/implementation time
● Compile time
● Load/link time
● Run time

– Bindings are usually either static or dynamic
● Static bindings begin before the program is executed and 

do not change during execution
● Dynamic bindings may begin or change during execution



  

Name

● Name: string of characters that serves as an identifier
– Case sensitivity
– Special characters with meanings  (e.g., $ and @ in Ruby)
– Standards or conventions (e.g., camelCase vs. under_scores)

– Semantic significance (e.g., type in FORTRAN and Prolog)
● Keyword vs. reserved word

– Keyword: string of characters with special meaning
– Reserved word: string of characters that cannot be used as a 

variable name (may or may not be a keyword)
● Name bindings are usually static

– Often created by a declaration
– Not all variables have a name!



  

Address

● Address: location of a variable in memory
– Sometimes called l-value

● Address bindings may be static or dynamic
– Creation of this binding is called allocation

● Aliases: multiple variables with identical addresses

x = a + 5

(uses x’s l-value)



  

Value

● Value: contents of the memory associated with a variable
– Sometimes called r-value

● Value bindings are usually dynamic
– Otherwise, they wouldn't be "variable"
– First binding is called initialization
– Important exception: named constants
– Purely-functional languages (e.g., Haskell) are also an exception

x = a + 5

(uses a’s r-value)



  

Type

● Type: range of values a variable can store
– And the operations that can be applied to it
– Common primitive types: integer, real number, boolean, character
– Common composite types: array/string, pointer, record, union, object

● Implicit vs. explicit binding
– int x = 5  vs.  x = 5

● Static vs. dynamic typing
– The latter allows a variable’s type to change at runtime
– Requires the system to track a type for each variable in memory

● Type inference
– A language can be both implicitly and statically typed!



  

Type binding examples

● Java (explicit static)
int x = 5;

x = “hello”;    // compiler error

● JavaScript (implicit dynamic)
var x = 5;      // x is an int

x = “hello”;    // now it’s a String

● Java 10 (implicit static)
var x = 5;      // x is inferred to be an int

x = “hello”;    // compiler error



  

Lifetime

● Lifetime: duration of address/storage binding
– Period of time that the variable is available

● Common lifetimes are based on location:
– Static: entire program execution
– Stack-dynamic: single function execution
– Heap: arbitrary

● Binding is created at allocation
● Binding is destroyed at deallocation



  

Lifetime

● Explicit heap-dynamic: nameless memory accessed w/ 
pointers or references (e.g., C/C++ or Java)
– Allocated explicitly (e.g., malloc in C or new in C++ or Java)

– Can be deallocated explicitly (e.g., free in C and delete in C++)
● Some languages (e.g., Rust) have delegation mechanisms

– Can be deallocated implicitly (e.g., garbage collection in Java)
● Implicit heap-dynamic: allocated only when assigned a 

value (e.g., arrays in Javascript)
– Reallocated when assigned a different value
– Deallocated implicitly

We will consider instance variables to be explicit or implicit according to 
the object they belong to; this is somewhat ambiguous in our textbook



  

Scope

● Scope: program range where a variable is visible
– A variable is visible if it can be referenced without qualification

● E.g., just “x” instead of “Foo::Bar::x”
– Many possible ranges (e.g., block, function, global, package)
– OOP brings even more possibilities (public, private, protected)

● Local vs. non-local variables
– A variable is local in the scope where it is declared
– Local variables shadow (hide) non-local variables w/ same name
– Sometimes shadowed variables are still accessible w/ qualification

● Often related to lifetime
– But not necessarily! (e.g., static local in C)



  

Scope

● Static (lexical) vs. dynamic scoping
– Code structure vs. call structure
– Both involve finding a variable (name resolution) by 

searching through a hierarchy of scopes
● Static scoping: compiler can do the search
● Dynamic scoping: search the stack at runtime

– Dynamic scoping is rare now and usually optional
● Example: “my” (static) vs. “local” (dynamic) in Perl



  

Referencing Environment

● Referencing environment: all variables visible at some 
statement without qualification
– Local scope plus ancestor scopes
– Related concept from compilers: nested symbol tables
– Which variables are visible at the blue and green statements?

class Shadowing4 {
    public static void main(String[] args) {
        System.out.println(args[0]);
        if (true != false) {
            int x = 5;
            System.out.println(x);
        }
    }
}  

Environment at blue: { main.args:string }
Environment at green: { main.args:string, main.x:int }



  

Static/dynamic scoping example

● For both static and dynamic scoping:
– What are the referencing environments at location A, B, and C?
– What is the output?

program p {
  int x = 5
  int y = 2
  // LOCATION A
  func g() {
    int x = 12
    int z = 8
    // LOCATION B
    f()
  }
  func f() {
    // LOCATION C
    println(x)
  }
  g()
}

Static scoping:
A: { p.x:int, p.y:int }
B: { p.y:int, g.x:int, g.z:int }
C: { p.x:int, p.y:int }
Output: “5”

Dynamic scoping:
A: { p.x:int, p.y:int }
B: { p.y:int, g.x:int, g.z:int }
C: { p.y:int, g.x:int, g.z:int }
Output: “12”



  

Scoping nuances

● Some languages allow mixing of declarations and code (e.g., C99)
– Scope is usually from declaration to end of program unit

● Some languages require declaration before reference
– Declaration order can influence scoping

● Block-structured languages often restrict scope of declarations in a block
– Sometimes allow duplicate names within a larger enclosing scope

● Many languages do not require explicit declarations (e.g., Ruby)
– Scoping often defaults to function-level (why not block?)

● Scoping is usually enforced by compiler/interpreter, but not always
– In Python, “private” class fields (starting w/ underscores) aren’t private!



  

Scoping nuances

● “Global” can mean different things
– In Ruby, global variables are truly global (accessible 

from entire program)
– In C, “global” variables are actually only accessible 

from code in the same module (extern required to 
access it from a different file)

– In Python, global variables must be marked in 
functions that wish to use them, and must be tagged 
with module name outside the module



  

Global scoping example

● What does this Python program print?
x = 5

def bar():
    print(x)

def baz():
    x = 7
    print(x)

def bam():
    global x
    x = 7

bar()
baz()
print(x)
bam()
print(x)

x = 5

def hipster():
    print(x)
    x = 4
    print(x)

hipster()



  

Block scoping examples

● Java:

/* OK */
int foo() {
    int x;
    if (someTest()) { x = 5; }
    else            { x = 7; }
    return x;
}

/* compiler error! */
int foo() {
    if (someTest()) { int x = 5; }
    else            { int x = 7; }
    return x;
}

● Ruby:

def foo()
    if someTest()
        x = 5
    else
        x = 7
    end
    return x
end



  

Conclusion

● Variables are complicated!
– Perhaps more so than you realized before
– Many decisions are made at language design time
– These decisions impact programmers a LOT
– In general, consistency and simplicity are key

● Principle of Least Surprise



  

Case studies

● Questions
– What is the name, address, value, type, lifetime, and scope?
– Are the bindings static or dynamic?

● Cases
– Java “private” class instance variable

● What would be different in C++?

– Java "public static final" class variable
– C local loop index variable

● i.e., “for (int i = 0; i < N; i++)”

Reminder: common lifetimes include
● Static
● Stack dynamic
● Explicit heap dynamic
● Implicit heap dynamic



  

Case studies
Java "private" class instance variable
  name:     static, bound at compile time
  address:  dynamic, bound on object instantiation
  value:    dynamic, bound on every assignment
  type:     static, bound at compile time
  lifetime: explicit heap dynamic: object instantiation to garbage collection
  scope:    static, all methods in class

Java “public static final” class variable
  name:     static, bound at compile time
  address:  static, bound at compile time
  value:    static, bound at compile time
  type:     static, bound at compile time
  lifetime: static, entire execution
  scope:    static, all code that can see the class

C local loop index variable
  name:     static, bound at compile time
  address:  dynamic, bound at function entry
  value:    dynamic, re-bound on every loop iteration
  type:     static, bound at compile time
  lifetime: stack dynamic, during function execution
  scope:    static, loop body
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