

CS 430
Spring 2022

Mike Lam, Professor

Activations and Environments

Course Outline

● Syntax (modules 2-3)
● Semantics (modules 5-8, 10-11, and 13-14)

– Variables and scoping
– Types and type checking
– Expressions and control structures
– Parameters and subprograms

● Implementation (modules 16 and 18-19)
– Activation and environments
– Abstraction and OOP
– Concurrency and error handling

● History (module 20)

Runtime Environment

● Programs run in the context of a system
– Instructions, registers, memory, I/O ports, etc.

● Compilers must emit code that uses this system
– Must obey the rules of the hardware and OS
– Must be interoperable with shared libraries compiled by a

different compiler
● Memory conventions:

– Stack (used for subprogram calls)
– Heap (used for dynamic memory allocation)

Runtime Environment

● In this module we’ll focus on calling conventions
– How the system stack (w/ top tracked using the stack

pointer) is used for subprogram invocation/activation
● But first: a CS 261 review

– You’ve seen calling conventions already!
– Remember these slides?

Runtime stack

● Basic idea: maintain a system
stack frame for each procedure call
– All active procedure have a frame
– Each frame stores information about

a single active call
● Arguments, local variables, return

address

– GDB's "backtrace" command follows
the chain up

– Recursion just works!

stack

Here function P has called function Q

Control transfer

● Use stack to store return addresses
– Return address: the instruction AFTER the call

– call / callq pushes 64-bit return address onto stack

– ret / retq pops the return address and sets %rip

400550 <main>:
 ...
 400563 callq 400540 <foo>
 400568 movq 0x8(%rsp), %rdx
 ...

400540 <foo>:
 400540 xorq %rax, %rax
 ...
 40054d retq

Data transfer

● In x86-64, up to six integral (integer or pointer)
arguments are passed to a procedure via registers:
– %rdi, %rsi, %rdx, %rcx, %r8, %r9

– Other arguments are passed on the stack (and pushed in
reverse order)

● A single return value is passed back via %rax
– Large structs often “returned” using a pointer

Local storage (registers)

● Some registers are designated callee-saved
– In x86-64: %rbx, %rbp, %r12, %r13, %r14, %r15

– A procedure must save/restore these registers (often using
push/pop) if they are used during the procedure

– When possible, avoid using these registers inside
procedures (lower overhead)

● Other registers (except %rsp) are caller-saved
– Caller must save them if they need to be preserved
– The stack pointer is a special case (used for communication)

Local storage (memory)

● Procedures can allocate space on the
stack for local variables
– Subtract # of bytes needed from %rsp

– Deallocate by restoring old %rsp value

● Variable-sized allocations require
special handling
– Use base / frame pointer (%rbp) to track

“anchor” for current frame
– Save previous base pointer on stack at

beginning of function
– Section 3.10.5 in CS 261 textbook

● Back to CS 430 …
– Let’s generalize these concepts now

Subprograms

● Subprogram general characteristics
– Single entry point
– Caller is suspended while subprogram is executing
– Control returns to caller when subprogram completes
– Caller/callee info stored on stack

● Activation record: data for a single subprogram execution
– Local variables
– Parameters
– Saved registers
– Dynamic link (base/environment pointer) and/or static link
– Return address

Subprogram Activation

● Call semantics
– Save caller status
– Compute and store parameters
– Save return address
– Transfer control to callee

● Return semantics
– Save return value(s) and out parameters
– Restore caller status
– Transfer control back to the caller

Linkage contract or
calling convention

(caller and callee must agree)

Typical Conventions

● Caller: precall sequence
– Evaluate and save parameters
– Save return address
– Transfer control to callee

● Callee: prologue sequence
– Save & re-initialize base pointer
– Allocate space for local variables

● Callee: epilogue sequence
– De-allocate local variables
– Restore saved base pointer
– Transfer control back to caller

● Caller: postreturn sequence
– De-allocate parameters

Prologue

Precall

Postreturn

Epilogue

Prologue

Epilogue

Caller

Callee

Note: The caller and/or callee may also
need to save and restore other state
(e.g., register values), depending on the
specific system conventions and the
needs of the caller/callee.

Non-local variables

● Dynamic scoping
– Must be able to look up variables by dynamic scope

● One approach: deep access
– Search all activation records one at a time using dynamic links
– Slow access but fast linkage

● Another approach: shallow access
– Maintain a stack for each variable name
– Push/pop variable instances as well as activation record
– Active copy is always on top of the stack
– Faster access but slower linkage

Non-local variables

● Static scoping is simple without nested subprograms
– Local variables are on the stack (track base pointer offsets)
– Global variables are in static data (track addresses)

● Name resolution is harder with nested subprograms
– Must be able to look up variables by lexical scope

● Primary method: static chains
– Introduce a new static link

● Similar to dynamic link, but points to most recent lexical parent
● Created at runtime using nesting depth calculated at compile time

– Associate (chain-offset, local-offset) pairs with each variable
● Follow chain-offset # of static links
● Then use local-offset to find variable in its activation record

Dynamic and static links

● Dynamic link points to caller
– Set link to previous EP at subprogram activation
– Then move EP to base of new activation record

● Static link points to lexical parent
– Set link based on subprogram location in code
– If multiple instances of parent, use the most recent

● Name resolution
– Use dynamic links for dynamic scoping and static links

for static scoping

Example (from CPL)

stack

Exercise

01 def P() {
02
03 var x = ‘p’
04
05 def A() {
06 println(x)
07 }
08
09 def B() {
10 var x = ‘b’
11 def C() {
12 var x = ‘c’
13 println(x)
14 D()
15 }
16 def D() {
17 println(x)
18 A()
19 }
20 C()
21 }
22 B()
23 }

Local Variables

Static Link

Dynamic Link

Return Address

Trace this program using the
activation record layout below.

Exercise

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20

